
Introduction UNIX security model Linux Capabilites Secure Programming practices

System Security

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

April 3, 2012

Introduction UNIX security model Linux Capabilites Secure Programming practices

Lesson contents

Overview

The *nix user control and file permission model

Linux Capabilites based permission control

Secure programming practices

Introduction UNIX security model Linux Capabilites Secure Programming practices

How to train your users

Overview

Linuxa are natively conceived as a multi-user operating system

Multiple users will naturally perform different task, and have
different needs on the machine

To avoid abuses, the user access to the hardware should be
somehow restricted

It should also be possible to unite users in groups, in order to
ease the control

aand more in general all the Unices

Introduction UNIX security model Linux Capabilites Secure Programming practices

Access to the system

Login and credential storage

The basic Linux authentication and user control method relies
on assigning a unique numeric User IDentifier to every user

The UIDs, together with some information about the users are
stored in /etc/passwd

For safety reasons, the actual hashes of the user passwordsa

are preserved in /etc/shadow

At login, the system checks if the user exists, hashes the
passwords and matches it against the correct hash and
executes the preferred command interpreter for the user

For large system it is possible to use a database backend to
store the credentials together with a centralized login

aas noone, in his sane mind should store cleartext passwords

Introduction UNIX security model Linux Capabilites Secure Programming practices

Processes

Overview

Every process in modern Unices has three UID identifying it :

real UID: it is the UID of the actual process owner
effective UID: it is the UID used used for access control
saved UID: stores a previous UID in order to be able to change
it back

Every process in Linux also has an FSUID, which acts as a
separate UID for file access

Usually the FSUID follows the EUID, unless explicitly set

Analogously to UIDs, 4 group IDs are attached to each process

Introduction UNIX security model Linux Capabilites Secure Programming practices

File permissions

Overview

As we recall from the basic system administration lessons,
under Unix everything is a file

It is thus natural to have the access permissions set on every
file

Every file has both an owner and a group to which it belongs

The basic permissions to act on a file are stored for both the
owner and the group

Introduction UNIX security model Linux Capabilites Secure Programming practices

File permissions

the User-Group-Other model

Three access check are made under Unix : the permission to
read (r), write (w) and execute a file x

The common permission are usually represented visually by 9
characters rwxrwxrwx

The first 3 (rwxrwxrwx) are the permissions for the owner

The second 3 (rwxrwxrwx) are the permissions for the
members of the same group which owns the file

The last 3 (rwxrwxrwx) are the permissions for the others

Permissions can be changed via the chmod command

Introduction UNIX security model Linux Capabilites Secure Programming practices

File permissions

Changing permissions and ownerships

File Permissions can be changed via the chmod command

chmod accepts either a 4-digit octal representation of the
permissions...

or a list of the permissions to be added-revoked

Revoking the execute permission on a directory forbids its
traversal

A special permission, the sticky bit allows only the owner of a
file to remove it (even if others have full access)

The chown command allows to change the owner/group of a
file

Introduction UNIX security model Linux Capabilites Secure Programming practices

The administrator

Got root?

Among all the users, one is special: the system administrator

The system administrator, by default named root has a
reserved UID of 0

Any permission check will be skipped if the issuer of an action
has UID 0

This implies that any process with EUID 0 can read/write/run
anything

Having an EUID of 0 allows a process to modify any access
credentials without knowing the previous ones

Introduction UNIX security model Linux Capabilites Secure Programming practices

Saved IDs

Set user ID and set group ID

Executable programs can be endowed with the set user ID
(suid) bit via chmod

These programs are executed with an EUID equal to the
owner of the file and not the caller

This allows to execute programs as someone else, even
without his/her credentials

Analogously, the set group ID permission changes the EGID
value

Suid root binaries act exactly as if the system administrator
was running them

You can find all of them via find / -perm +6000 -type f

-user root (suid and sgid are expressed as an octal digit)

Introduction UNIX security model Linux Capabilites Secure Programming practices

A programmer point of view

Linux API for UNIX permissions

The getuid and geteuid function return respectively the real
and effective UID

The setuid and seteuid try to set the respective UIDs if
permitted

The chmod function acts exactly as the command

For chmod to work, either the EUID matches the owner of the
file, or the program runs as root

The same concept applies to the chown function

Introduction UNIX security model Linux Capabilites Secure Programming practices

Linux Capabilities

When root is too much

The power held by the administrator in UNIX is absolute,
yielding it in a single block may be too much

Typical example : why must my web server run as root when
it just needs to open a privileged port?

Solution : POSIX Capabilities : partition the administrative
rights in a set of capabilities

Affix some of the capabilites to an executable file, instead of
setting it suid root

Introduction UNIX security model Linux Capabilites Secure Programming practices

Linux Capabilities

Common capabilities

The list of all system capabilities is available with man

capability

Useful capabilities are :

CAP NET RAW : allows to use raw sockets
CAP NET ADMIN : allows to change routing tables
CAP KILL : unlocks signal sending to everyone
CAP SYS NICE : allows to renice with negative values

You can retrieve the list of capabilities of a file with getcap

<filename>

Symmetrically, you can set the capabilities setcap

<capability>[+|-|=]ep <filename>

Introduction UNIX security model Linux Capabilites Secure Programming practices

Key Ideas

Do not take anything for granted

Secure programming implies checking that the inputs and the
environment of a program are safe

Error messages should be explanatory, but not too much

Memory management errors are a possible source of endless
issues

The printf case

Capabilities or extra privileges granted should be discarded
when not needed

Introduction UNIX security model Linux Capabilites Secure Programming practices

Hostile Environments

Mind user input

User input may not just be “rotten”, but actually intentionally
poisoned

It is possible to deviate the common behaviour of a program if
it does not take any care in verifying that the input matches a
sane format

We will see two examples :

the system call which runs a command in a new instance of
the command interpreter
the exec call family, which runs a command directly, replacing
the code of the running process

Remember that, when a call to fork or exec is issued, the
value of EUID and EGID is preserved

Introduction UNIX security model Linux Capabilites Secure Programming practices

Hostile Environments

Error notifications

Our good nature pushes us towards using meaningful error
messages to help the user

However, the error messages have historically been a source of
information leakage

Every time an error message is displayed, some information
about the state of the program leaks

Sample issue: what if I help the user outputting the wrong
line of a config file?

Best practice : employ verbose error messages only enclosed
in DEBUG macros and remove them afterwards

Introduction UNIX security model Linux Capabilites Secure Programming practices

Hostile Environments

What’s in a SEGFAULT? Wouldn’t it be as dangerous as...

Bad memory management and boundary checking looks as
just a safety issue

It turns out that performing memory copy operations without
checking boundaries may allow the attacker to write anywhere
in the memory segment of the program

Since the stack is a commonly writeable area, it may happen
that a part of the stack is overwritten during a strcpy

operation

... but on the stack there’s the return pointer of the actual
call!

Introduction UNIX security model Linux Capabilites Secure Programming practices

Hostile Environments

Proper memory management

Arbitrary memory rewriting allows control flow hijacking: it’s
feasible and it’s being done since 1996

Always allocate enough space when you are copying strings
(#char+1)

Use only boundary checking copy functions (strncpy)

Always check if memory allocations succeed, copying into a
NULL pointer is also dangerousa

aNULL is defined as (void*) 0 , so if someone mmaps things to 0...

Introduction UNIX security model Linux Capabilites Secure Programming practices

Hostile Environments

Format string issues

At a first glance, the printf function looks mostly harmless

However, the number of arguments it treats is implicitly
indicated in the format string

What if a printf does not have any parameters , and the
user can specify a part of the string being printed?

Reminder: among the format options allowed by C there is %n,
which writes the number of printed character in a variable...

Introduction UNIX security model Linux Capabilites Secure Programming practices

Dropping privileges

Typical suid privilege dropping

The correct practice if you have a suid root program to be run is
to drop the privileges as soon as you do not need them anymore :

State Action EUID Real UID Set UID

Startup 0 user 0

temp. drop seteuid(getuid()) user user 0

restore seteuid(0) 0 user 0

Perm. drop setuid(getuid()) user user user

restore seteuid(0) user user user

Introduction UNIX security model Linux Capabilites Secure Programming practices

Dropping privileges

Typical cap privilege dropping

Active capabilities can be checked via the cap get flag

function (returning true or false)

Capabilities can be dropped easily via the cap set flag

function

Capability dropping is permanent for the current run of the
program (no mechanism as saved caps)

the whole capability set can be retrieved via a call to the
cap get proc function

	Introduction
	UNIX security model
	Linux Capabilites
	Secure Programming practices

