
Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Bash Scripting

Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

alessandro.barenghi - at - polimi.it

April 30, 2014

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Introduction

The bash command shell

Bash stands for ”Bourne-Again shell”: it is a GNU
reimplementation of the Unix r7 shell by S. Bourne

Derived from a long line of other shells (sh, Bourne shell,
Korn Shell,...)

The most common shell – and the one you get by default on
most Linux systems

Other shells differ from bash in terms of syntactic sugar

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Introduction

Shell scripts

A shell script is simply a ASCII text file, which is fed to a
command interpreter

The script should begin with a shebanga symbol (#!)
followed by the pathname of the interpreter

Any system binary can be used as an interpreter

The script pathname is simply passed to it as the first
parameter

In case no interpreter is specified, the default interpreter (i.e.,
typically bash) is used

aalso called a sha-bang, hashbang, pound-bang, hash-exclam, or hash-pling

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Shell Variables

“typesystem”

By default, the variables have global visibility in the script

The basic variable type in bash is the textual string

Any C-like variable name is fine, but the common convention
is to have ALL UPPERCASE names

The $ operator substitutes a variable with its content

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Shell Variables

Commandline parameters

Commandline parameters of a script can be obtained via
implicit variables as:

$0 , $1 , $2 and so on, to obtain one of them (as per C’s
argv)

$* yields a single variable with the concatenated parameters

$@ yields a list of the parameters, as tokenized by bash

$# Yields the number of parameters

In case you need it $ recalls the value of the last variable
expansion

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Shell Variables

Environment Variables

The bash interpreter, as all the binaries, runs with
environment defined variables

Environment variables can be accessed by running programs
(e.g. through C’s getenv function)

You can add a variable for a single command execution
prefixing its declaration to the command

The export command allows you to export the variable in the
current bash environment

To remove a variable from the environment, use the unset

command

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Non-builtins

Some helpful commands

All the environment variables can be output invoking env

Your current working directory is obtained invoking pwd

seq is a simple program generating sequence of strings, with
a variable integer value

Common syntax: seq <beginning> [step] <end>

the -f=format allows you to use a format string to print out
the values

-w pads the numbers to a constant lengths with zeros

-s=separator changes the different line ending from \n

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Control Flow Basics

Straight line code

The statements in a bash script are executed in program
order by default

; can be used as a statement separator between statements
on a single line: you can turn any script in a one liner (not
advised)

A # not followed by a ! is the beginning of a single line
comment

The exec command explicitly executes a fork-exec call pair
to run the following commands

The echo command prints its arguments on the screen

The exit <number> command exits the script with return
value number

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Control Flow Basics

if construct

The if statement syntax is:

if <condition>; then <statements> else <statements> fi

The output of a command can be used as a condition
(successful execution is true, error is false)

true and false commands are available for base cases

The test command allows you to test common stuff

test -e <filename> returns true if the file exists
test ! -e <filename> returns true if the file doesn’t exist
test <string1> = <string2> returns true if the strings

match

Enclosing the condition in [] is equivalent to invoking test

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Control Flow Basics

for construct

The for statement syntax is:

for <variable> in <list>; do <statements> done

for splits <list> according to the value of the IFSa variable
and runs the loop body assigning each element to variable

Typically the <list> is obtained as the output of executing a
command via command substitution:

Enclose something in ‘‘ , bash will substitute it with the
output of its execution

Common command substitutions include either ls or seq

ainternal field separator

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Control Flow Basics

case construct

The case statement syntax is:
case <variable> in <list>; <pattern>) <statements> ;; esac

The case statements performs in a similar fashion to the
switch-case in C, i.e., match a variable against alternatives

Main difference: since the variables are string, you can specify
a POSIX regular expressiona to be matched

The * metacharacter indicates any (zero or more) characters

[] can enclose character classes, e.g., [0-9]

Concatenation is simply concatenating patterns

aCaveat: POSIX regular expressions do not match the expressive power of
common regular expression, e.g., they can count

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Arithmetic interpretation

Learning to do math

All the variables are by default strings in bash , i.e. no arith
operations are available

e.g., trying to print the variable SUM=1+1 will result in 1+1

being printed

It is possible to ask for an arithmetic interpretation of a string
via double braces (()) → echo $((6*7)) will print 42

It is not possible to enclose multiple statements in (()) with
the only following exception:

for ((i=0 ; $i<10 ; i=$i+1)) do ... ; done

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Functions

...or somehow that looks like them

Bash provides minimal support for code refactoring in the
form of simplified functions

The syntax for a function declaration is:
<function name> () { <function body> }

All the functions are assumed to have variable arguments,
accessible via $@

Function invocation is simply done as
function name arg1 arg2 arg3 ...

Warning: the function body is not parsed until the function is
invoked: latent syntax errors may hide there

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and File Descriptors

Data flow among commands

Proper bash plumbing and flow redirection is a basic skill to
redirect stuff around the system

Practically, bash provides the user with constructs to

Concatenate the standard output files (stdout,stderr) of a
command into the standard input of another one
Feed any of them with/to a file on the disk
Duplicate data flows or merge them

Fits the UNIX paradigm: every command does one precise
thing, combine them to obtain complex effects

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and File Descriptors

Files and file descriptors

Bash allows the redirection of information into a command’s
stdin or from a command’s stdout, stderr

Many commands under Linux assume something is piped into
their stdin to work properly

bash allows explicit referencing to stdin,stdout, stderr

employing the 0,1,2 token respectively

More filedescriptor (fds from now on) can be opened, and
referenced with integers > 2

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and File Descriptors

Redirection operators

fd > file and fd < file redirects data from a fd, into a file,
and viceversa. Redirect a command output, redirects stderr

fd >> file appends to the file instead of overwriting

fd1 >& fd2 merges the data from fd1 into fd2

command1 | command2 redirects the stdout of command1 into
the stdin of command2 (this is not bidirectional!)

The operators and commands can be concatenated at will

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and File Descriptors

Useful redirection targets

the stdin of less : less is a text pager, which allows you to
read long texts

the stdin of sort : sorts by line the text passed as input

the stdin of uniq : returns unique occurrences of the lines

/dev/null : a fake device discarding anything written into it

tee <filename> : copies whatever it is redirected into its
stdin both to its stdout and into the <filename>

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and flows

Managing Filedescriptors

Executing filedescriptor<> filename opens your file for
reading and writing (e.g. exec 6<>)

To close a fd, redirect it to - (e.g. exec 6>&- closes 6)

read -n number of chars variable name reads, by default from
stdin, n characters into the variable

read -n number of chars variable name <&3 reads from fd 3, n
characters into the variable

A simple echo ‘‘foo’’ may be used to write into an open fd
through redirection (e.g. echo ‘‘foo’’>3)

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Pipes and flows

Pipes

Employing a pipe character (i.e. |) chains the standard
output of the leading command to the trailing of the last one

The stdbuf command allows to specify how many bytes
should the input (-i), output (-o), and error(-e) buffers
be long (changing stderr buffer is not advised!)

Comes in terribly handy when employing nc or whenever you
want a stream to be pushing characters down the pipe
instantly

Simply prepend a stdbuf -i0 -o0 -e0 and enjoy!

Removing the buffering is critical if you’re juggling with
socat,nc and the likes to send something via network

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing

Eye of the beholder

Watching over things is always important

Sometimes it’d be useful to have a self refreshing command
out of any command

watch does exactly the tricks

-n <seconds> specifies how often to refreshing

-d highlights the changes from the last time (useful for
spotting tiny changes)

	Introduction
	Variables
	Helper commands
	Control Flow Constructs
	Basic Plumbing

