Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

6 giugno 2024



Dynamic programming

o Key idea: a problem can be solved combining the solution to a set of identically
structured subproblems.
@ The subproblems should be overlapping partially, or it's not dynamic programming
it's divide et impera.
@ Solution strategy:
@ Spot the fact that the problem has an optimal substructure
@ Locate the structure of a base-case solution
© Define a way to combine the solutions
@ Example: cut bars with a given price list. Once cut rod for a given length is
solved, reuse it



Top-Down Cut-rod-find-price(prices,n)

Input: prices: array of prices for the bars, the array index is the bar length, n € N: length of the bar
Output: (op,oc): best price and best cut points
Data: memopt: array of memoized best prices. initialized to all —1
memcuts: array of memoized best cut position lists
if memopt|n] # —1 then
|  return (memopt|n],memcuts|n])
if n =0 then
| return (0,0)
op < —1
oc ||
for i =1 ton do
(newprice, cutlist) <— CUT-ROD-FIND-PRICE(prices,n — 4)
if op < prices[i] + newprice then
op « prices[i] + newprice
oc < CONCAT(i, cutlist)
memopt|n] < op
memcuts|n] < oc
return (op, oc)




Bottom-Up Cut-rod-find-price(prices,n)

Input: prices: array of prices for the bars, the array index is the bar length, n € N: length of the bar to cut
Output: (op,oc): best price and best cut points

Data: memopt: array of memoized best prices (init to —1), memcuts: array of memoized best first cuts
memopt [0] < O;

memcuts[0] < 0;

if n =0 then
| return (0,0);
/* compute optima bottom up */

for i <~ 1 to n do

memopt[i] + —1;

for j < 1to i do

if memopt[i] < prices[j] + op[i — j] then

memopt[i] ¢ prices[j] + op[i — j];
memcuts[i] ¢ j;

oc <« [];

idx <+ n;

while idx > 0 do

PusHBACK (oc, memcuts|idz]);

idx + idr — memcuts[idzx];

return (op, oc);



Greedy algorithms

In essence, when trying a solution to a sub-problem, pick the one that locally looks
best.
o E.g., to find path with best weight in a tree, just look at the weight of your
children to pick the direction
They usually do not provide the best solution, but they may have optimality
guarantees
o Example 1: Dijkstra: picks the unvisited vertex with the shortest distance from
the source, updates all connected nodes distances
@ Example 2: Prim: build spanning tree starting from a vertex, adding the edge
with lowest weight and its node. Repeat considering the edges outgoing from the
current subgraph.



Complexity theory: purpose and subjects

o Complexity theory is used to classify problems according to how expensive in
time/space is solving them
@ We will deal with problems which are:
o With both domain and range over the naturals N
o Corresponding to the computation of a total computable function: each problem has
a finitely described algorithm solving it in finite time for any input

@ A bit of problem taxonomy:
o Search problem: given an input € N to a problem corresponding to the
computation of f(z), find y = f(z),y € N. Example: compute the square root of x.
o Decision problem: given an input z € N decide if = abides to some property
f(z) :N—={T,L}. Ex. Is x a perfect square?



Complexity classes

Complexity of computing the solution to a problem as a function of the input
length n in base b > 1
Define the class (=set of problems) DTIME(f(n)) as the ones for which a
deterministic TM takes f(n) moves to compute the solution
NTIME(f(n)) class: a nondeterministic TM takes f(n) moves to compute the
solution
In general, relations between DTIME and NTIME are not well understood

o Exception: DTIME(O(n)) C NTIME(O(n))
Analog classes exist for space complexity DSPACE(f(n)), NSPACE(f(n))



Complexity classes

@ Given f(n), can always build a problem not in DTIME(f(n)).

@ Vk > 1 there is a problem € DTIME(n*) and ¢ DTIME(n*~1)
@ Some notable time complexity classes are:

o P=;5 DTIME(n?),i € N: “practically treatable” for any n
o NP = J;5; NTIME(n'),i € N
EXP = {J;5, DTIME(2"),i € N

o PSPACE = |J,~, DSPACE(n*),i € N: NOT practically tractable in general,
NP C PSPACE

o P C NP C PSPACE C EXP, but P C EXP
@ Open questions: P < NP, P ~ PSPACE. Likely answer: No.



NP - An alternate definition

o It is possible to define a problem to be in NP in two ways
@ There is a nondeterministic TM which computes the solution to it in polynomial time
@ There is a deterministic TM which verifies that a solution for the problem is an
actual solution in polynomial time
@ For decision problems: there is a deterministic TM which, given an element which

makes the ND-TM accept, tests that is actually one of the elements which should
make the ND-TM accept

o Example: Exiting a binary branching labyrinth without a map:
@ A nondeterministic TM will find the poly-length exiting path, if any, taking all the
branches in parallel
@ A deterministic TM, given the path, will verify that it actually exits from the
labyrinth through walking through it



NP and complement classes

o P and NP defined on decision problems, for simplicity.

@ A decision problem on the naturals = test if a natural belongs to some defined set
= test if a string belongs to a language
@ What about testing if the integer does not belong to a set?
o If recognizing if it belongs to the set € P the problem is still € P: swap
accepting/rejecting states in the recognizing TM.
o If recognizing if it belongs to the set € NP, the problem is € coNP: the class of
problems for which (deciding if an elements belongs to) the complement of a given

set is in nondet-poly time.
o The “swap accepting/rejecting” does not work anymore: a TM terminates on a
single accepting state, or when all paths reject

o If | swap states, I'll only check one of the old rejecting paths
o NP = coNP? Open question; Highly likely answer: no.



Computational reductions

@ A need tool to compare the complexity of two problems: computational (aka
Turing) reduction
@ Given two problems A and B, A reduces to B if given an oracle for B | can solve
A. Thus
o A cannot be harder to solve than B
o B can be harder to solve than A
o Therefore, A <T B (where T reminds it's a Turing reduction)
o If A <™ B and | make only a poly number of calls to the oracle for B when
solving A, plus extra poly-time computations
o A reduces polynomially (or, Cook-reduces) to B
o A g;;f B, since solving B also solves A with extra poly effort



CLASS-hardness and CLASS-completeness

@ Given a complexity class CLASS and a generic problem B, B is CLASS-hard iff:
o VA € CLASS, A<T B

In other words, solving a CLLASS-hard problem solves with extra poly effort all the
problems in CLASS.

@ Given a complexity class CLASS and a problem B, B is CLASS-complete iff:

o B € CLASS and B is CLASS-hard

CLASS-complete problems are the “computationally hardest” within a class



A taxonomy in NP — Assuming P # NP

o NP-Hard problem: any problem such that | can poly reduce to it any problem in
NP. Note, there may be non-decision problems in this set.
@ NP-Complete class: problems such that all the problems in NP can be poly
reduced to any of them. Conventially formulated as decision problems only
o 3-SAT,Graph coloring, Subgraph isomorphism, decoding random linear codes,
syndrome decoding

@ NP-intermediate: essentially the complement of NPC to NP\P. Some problems
here have sub-exponential solutions

1 2
o Factoring € DTIME(O(elcto()n s log(n)3)) ' Discrete Logarithms
o Graph isomorphism (proven in 2015, disproved in '17, reproven in '17 later on,
should be O(2(°&(M™)) this time, for real)



Quantum Computing Model

@ A transition of a classical TM computes a constant time operation on a finite set
of symbols from a finite alphabet

@ An abstract quantum computing machine is a machine applying unitary
transformations (gates) assumed to be constant time to a finite set of qubits
@ Complexity evaluated as a function of the (classical) input length n:
o Time: evaluated as either the number of sequential gates (depth) or the total
number of gates (O(depthxqubits))
o Space: evaluated as number of involved qubits
@ A measurement of the result may not yield the same classical value if the
computation is repeated — probabilistic computation model



A primer on probabilistic computation

@ What is a randomized algorithm? We may randomize:
o running time: Algorithm A runs in probabilistic poly time, i.e., with a certain
probability it terminates in poly time
e correctness: regardless of the running time, the algorithm returns the correct answer
with probability p

@ We can solve problems, in expectation, if:

o The running time is either deterministically or probabilistically polynomial, with
Pr(poly time)>> Zink
o The algorithm provides a corrects solution with a satisfactory probability, that is,
either :
e pr1l
@ pis large enough to allow us to query the algo poly times and do majority voting.
p =1+ 5= would need exp. no. calls



Probabilistic computation classes (for TMs)

@ PP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
the correct answer with Pr > %
o Not necessarily tractable:% + 2% > %
o BPP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
the correct answer with Pr > % + k
o Tractable, for reasonable values of constant k, Typ. Pr = %

@ RP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
accept with Pr > % + k,if the solution is accept, but never accepting when it has
to reject

@ ZPP class: the problem is solved in DTIME(poly(n)) by an algorithm which:
gives a correct answer with Pr = % or answers “l don't know" with Pr = %

o Equivalent to an algo running on expected poly time, always giving correct answers
(not straightforward)



Probabilistic computation classes (for TMs)

EXP

PSPACE

|
PP
/l\
BPP coNP

\/\/

coRP

B

ZPP

p



Probabilistic computation classes (for quantum computers)

Finally, we can define what is tractable by a QC

o We consider the former abstract quantum machine model and define complexity as a
function of the classical input length n

BQP class: the problem is solved in DTIME(poly(n)) by a quantum machine
which leaves a final state on which a measure yields the classical correct answer
with Pr> 1 4+ k

Functionally analogous to BPP, but on a quantum computer

We know BPP C BQP: a QC emulates a classical probabilistic TM on poly-time
algs, with poly-time overhead

No sense in defining QP: cannot have a deterministic QC!



Relations between BQP and the other classes

BQP

Factoring
Discrete logarithm
coNP-
complete

Testing primality
Multiplication

Graph isomorphism

NP -
Complete

Box packing

nx nSudoku

D Problems with potential exponential speedup



Which speedups can we achieve?

@ Anything lying in NP \ P, and in BQP, or in coNP \ P, and in BQP — likely to
gain exponential speedup
o We have no general det. poly algorithm for A € NP\ P
@ Anything in P — likely not worth it: already poly time
o Usually, solving problems in P on a QC is slower (due probabilistic computation and
reversibility)
@ Outside BQP, inside PSPACE — no exponential speedup, but subexponential
gains are possible
o E.g. complexity goes down from O(2") to O(2%)
@ Strong belief: NP-complete N BQP = @
o A quantum computer is not a nondeterministic TM!
o 3SAT, SubGl are not getting an exponential speedup



