
Dynamic Programming and Complexity Theory

Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

6 giugno 2024



Dynamic programming

Key idea: a problem can be solved combining the solution to a set of identically
structured subproblems.

The subproblems should be overlapping partially, or it’s not dynamic programming
it’s divide et impera.

Solution strategy:
1 Spot the fact that the problem has an optimal substructure
2 Locate the structure of a base-case solution
3 Define a way to combine the solutions

Example: cut bars with a given price list. Once cut rod for a given length is
solved, reuse it



Top-Down Cut-rod-find-price(prices,n)

Input: prices: array of prices for the bars, the array index is the bar length, n ∈ N: length of the bar
Output: ⟨op, oc⟩: best price and best cut points
Data: memopt: array of memoized best prices. initialized to all −1

memcuts: array of memoized best cut position lists
if memopt[n] ̸= −1 then

return ⟨memopt[n], memcuts[n]⟩
if n = 0 then

return ⟨0, 0⟩
op← −1
oc← []
for i = 1 to n do
⟨newprice, cutlist⟩ ← Cut-rod-find-price(prices, n− i)
if op < prices[i] + newprice then

op← prices[i] + newprice

oc← Concat(i, cutlist)

memopt[n]← op

memcuts[n]← oc

return ⟨op, oc⟩



Bottom-Up Cut-rod-find-price(prices,n)

Input: prices: array of prices for the bars, the array index is the bar length, n ∈ N: length of the bar to cut
Output: ⟨op, oc⟩: best price and best cut points
Data: memopt: array of memoized best prices (init to −1), memcuts: array of memoized best first cuts
memopt[0]← 0;
memcuts[0]← 0;
if n = 0 then

return ⟨0, 0⟩;
/* compute optima bottom up */

for i← 1 to n do
memopt[i]← −1;
for j ← 1 to i do

if memopt[i] < prices[j] + op[i− j] then
memopt[i]← prices[j] + op[i− j];
memcuts[i]← j;

oc← [];
idx← n;
while idx > 0 do

PushBack(oc, memcuts[idx]);
idx← idx− memcuts[idx];

return ⟨op, oc⟩;



Greedy algorithms

In essence, when trying a solution to a sub-problem, pick the one that locally looks
best.

E.g., to find path with best weight in a tree, just look at the weight of your
children to pick the direction

They usually do not provide the best solution, but they may have optimality
guarantees

Example 1: Dijkstra: picks the unvisited vertex with the shortest distance from
the source, updates all connected nodes distances

Example 2: Prim: build spanning tree starting from a vertex, adding the edge
with lowest weight and its node. Repeat considering the edges outgoing from the
current subgraph.



Complexity theory: purpose and subjects

Complexity theory is used to classify problems according to how expensive in
time/space is solving them

We will deal with problems which are:

With both domain and range over the naturals N
Corresponding to the computation of a total computable function: each problem has
a finitely described algorithm solving it in finite time for any input

A bit of problem taxonomy:

Search problem: given an input x ∈ N to a problem corresponding to the
computation of f(x), find y = f(x), y ∈ N. Example: compute the square root of x.
Decision problem: given an input x ∈ N decide if x abides to some property
f(x) : N → {⊤,⊥}. Ex. Is x a perfect square?



Complexity classes

Complexity of computing the solution to a problem as a function of the input
length n in base b > 1

Define the class (=set of problems) DTIME(f(n)) as the ones for which a
deterministic TM takes f(n) moves to compute the solution

NTIME(f(n)) class: a nondeterministic TM takes f(n) moves to compute the
solution

In general, relations between DTIME and NTIME are not well understood

Exception: DTIME(O(n)) ⊂ NTIME(O(n))

Analog classes exist for space complexity DSPACE(f(n)), NSPACE(f(n))



Complexity classes

Given f(n), can always build a problem not in DTIME(f(n)).

∀k ≥ 1 there is a problem ∈ DTIME(nk) and /∈ DTIME(nk−1)

Some notable time complexity classes are:

P =
⋃

i≥1 DTIME(ni), i ∈ N: “practically treatable” for any n

NP =
⋃

i≥1 NTIME(ni), i ∈ N
EXP =

⋃
i≥1 DTIME(2n

i

), i ∈ N
PSPACE =

⋃
i≥1 DSPACE(ni), i ∈ N: NOT practically tractable in general,

NP ⊆ PSPACE

P ⊆ NP ⊆ PSPACE ⊆ EXP, but P ⊊ EXP

Open questions: P
?
= NP, P

?
= PSPACE. Likely answer: No.



NP - An alternate definition

It is possible to define a problem to be in NP in two ways
1 There is a nondeterministic TM which computes the solution to it in polynomial time
2 There is a deterministic TM which verifies that a solution for the problem is an

actual solution in polynomial time

For decision problems: there is a deterministic TM which, given an element which
makes the ND-TM accept, tests that is actually one of the elements which should
make the ND-TM accept

Example: Exiting a binary branching labyrinth without a map:
1 A nondeterministic TM will find the poly-length exiting path, if any, taking all the

branches in parallel
2 A deterministic TM, given the path, will verify that it actually exits from the

labyrinth through walking through it



NP and complement classes

P and NP defined on decision problems, for simplicity.

A decision problem on the naturals = test if a natural belongs to some defined set
= test if a string belongs to a language

What about testing if the integer does not belong to a set?

If recognizing if it belongs to the set ∈ P the problem is still ∈ P: swap
accepting/rejecting states in the recognizing TM.
If recognizing if it belongs to the set ∈ NP, the problem is ∈ coNP: the class of
problems for which (deciding if an elements belongs to) the complement of a given
set is in nondet-poly time.
The “swap accepting/rejecting” does not work anymore: a TM terminates on a
single accepting state, or when all paths reject

If I swap states, I’ll only check one of the old rejecting paths

NP = coNP? Open question; Highly likely answer: no.



Computational reductions

A need tool to compare the complexity of two problems: computational (aka
Turing) reduction

Given two problems A and B, A reduces to B if given an oracle for B I can solve
A. Thus

A cannot be harder to solve than B
B can be harder to solve than A
Therefore, A ≤T B (where T reminds it’s a Turing reduction)

If A ≤T B and I make only a poly number of calls to the oracle for B when
solving A, plus extra poly-time computations

A reduces polynomially (or, Cook-reduces) to B
A ≤T

p B, since solving B also solves A with extra poly effort



CLASS-hardness and CLASS-completeness

Given a complexity class CLASS and a generic problem B, B is CLASS-hard iff:

∀A ∈ CLASS, A ≤T
p B

In other words, solving a CLASS-hard problem solves with extra poly effort all the
problems in CLASS.

Given a complexity class CLASS and a problem B, B is CLASS-complete iff:

B ∈ CLASS and B is CLASS-hard

CLASS-complete problems are the “computationally hardest” within a class



A taxonomy in NP – Assuming P ̸= NP

NP-Hard problem: any problem such that I can poly reduce to it any problem in
NP. Note, there may be non-decision problems in this set.

NP-Complete class: problems such that all the problems in NP can be poly
reduced to any of them. Conventially formulated as decision problems only

3-SAT,Graph coloring, Subgraph isomorphism, decoding random linear codes,
syndrome decoding

NP-intermediate: essentially the complement of NPC to NP\P. Some problems
here have sub-exponential solutions

Factoring ∈ DTIME(O(e(c+o(1))n
1
3 log(n)

2
3 )), Discrete Logarithms

Graph isomorphism (proven in 2015, disproved in ’17, reproven in ’17 later on,

should be O(2(log(n)
3)), this time, for real)



Quantum Computing Model

A transition of a classical TM computes a constant time operation on a finite set
of symbols from a finite alphabet

An abstract quantum computing machine is a machine applying unitary
transformations (gates) assumed to be constant time to a finite set of qubits

Complexity evaluated as a function of the (classical) input length n:

Time: evaluated as either the number of sequential gates (depth) or the total
number of gates (O(depth×qubits))
Space: evaluated as number of involved qubits

A measurement of the result may not yield the same classical value if the
computation is repeated → probabilistic computation model



A primer on probabilistic computation

What is a randomized algorithm? We may randomize:

running time: Algorithm A runs in probabilistic poly time, i.e., with a certain
probability it terminates in poly time
correctness: regardless of the running time, the algorithm returns the correct answer
with probability p

We can solve problems, in expectation, if:

The running time is either deterministically or probabilistically polynomial, with
Pr(poly time)≫ 1

2 ink
The algorithm provides a corrects solution with a satisfactory probability, that is,
either :

p ≈ 1
p is large enough to allow us to query the algo poly times and do majority voting.
p = 1

2
+ 1

2n
would need exp. no. calls



Probabilistic computation classes (for TMs)

PP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
the correct answer with Pr > 1

2

Not necessarily tractable: 12 + 1
2n > 1

2

BPP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
the correct answer with Pr > 1

2 + k

Tractable, for reasonable values of constant k, Typ. Pr = 2
3

RP class: the problem is solved in DTIME(poly(n)) by an algorithm outputting
accept with Pr > 1

2 + k,if the solution is accept, but never accepting when it has
to reject

ZPP class: the problem is solved in DTIME(poly(n)) by an algorithm which:
gives a correct answer with Pr = 1

2 , or answers “I don’t know” with Pr = 1
2 .

Equivalent to an algo running on expected poly time, always giving correct answers
(not straightforward)



Probabilistic computation classes (for TMs)



Probabilistic computation classes (for quantum computers)

Finally, we can define what is tractable by a QC

We consider the former abstract quantum machine model and define complexity as a
function of the classical input length n

BQP class: the problem is solved in DTIME(poly(n)) by a quantum machine
which leaves a final state on which a measure yields the classical correct answer
with Pr > 1

2 + k

Functionally analogous to BPP, but on a quantum computer

We know BPP ⊆ BQP: a QC emulates a classical probabilistic TM on poly-time
algs, with poly-time overhead

No sense in defining QP: cannot have a deterministic QC!



Relations between BQP and the other classes

coNP coNP-
complete

Testing primality
Multiplication

Problems with potential exponential speedup



Which speedups can we achieve?

Anything lying in NP \ P, and in BQP, or in coNP \ P, and in BQP → likely to
gain exponential speedup

We have no general det. poly algorithm for A ∈ NP \ P
Anything in P → likely not worth it: already poly time

Usually, solving problems in P on a QC is slower (due probabilistic computation and
reversibility)

Outside BQP, inside PSPACE → no exponential speedup, but subexponential
gains are possible

E.g. complexity goes down from O(2n) to O(2
n
2 )

Strong belief: NP-complete ∩ BQP = ∅
A quantum computer is not a nondeterministic TM!
3SAT, SubGI are not getting an exponential speedup


