Alessandro Barenghi
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

alessandro.barenghi - at - polimi.it

March 16, 2016




Introduction

Introduction

Why a system administration lesson?

@ Strong binding between system architecture and network stack

@ System administration and management skills are required to
“survive” in this environment

@ As a bonus, they come in handy in a lot of other contexts

@ They are taken for granted in other courses




Introduction

Chosen Platform

Why Linux?

@ The chosen platform for the course is GNU/Linux
@ No restrictions on the redistribution of tools/practice material

@ The notions easily generalise to affine Unices (f.i. MacOS X)
with minor changes

@ Any recent Linux distribution is fine for practicing




Introduction

Study methodology

The four letter creed

@ “Ten minutes of direct practice are worth ten hours of study
in system adminstration”

@ Pick a distribution and install it in a realistic environment
(real lron is the best choice)
o Debian is an easy shot for beginners
o Slackware is extremely clean as far as internal structure goes
o Gentoo might not be for the faint of heart, but it's really
effective as far as learning goes

@ Begin practicing soon, these notions take time to consolidate

@ Linux is endowed with an outstanding manual suite available

typing PR IRRIO e from a terminal emulator




Introduction

Overview

What you should already know

@ How to perform basic operations from the commandline
interface (list files, change directory, copy files)

@ Basic knowledge of the OS from Computer Architecture and
OS course (what is a process, OS inner workings)

@ Basic knowledge of the underlying hardware, from the same
course (how does a context change take place)

@ Solid knowledge of the C language fundamentals: the whole
Linux kernel and commandline utilities are written in C




Introduction

Overview

Lesson contents

@ How to manage the multitasking environment in Linux

@ How to examine what a program is employing as resources
@ How to inspect a process running on the system
°

How to manage a running system in times of trouble




Background

Commandline interface

The shell

@ We will be using a commandline interface to perform all our
tasks as it is the simplest interface

@ The commandline interpreter, a.k.a. the shell is a program
which runs an infinite loop where:

@ The commands typed in are read and tokenized (= divided in
strings, splitting on spaces) when we press the return key

@ The first token is the name of the program which should be
executed, the others are its parameters

© The shell performs a [[Xed, and its child &8s the program
with the proper parameters

Q The shell |EEERgs for the end of the execution of the child, and
then accepts a new command




Process handling

Under the hood

Process Tree Structure

@ In a Linux system the processes are bound by a strict
parent-son family relationship

@ The boot process, after the kernel has bootstrapped the

machine, yields the control to either SR or |t

o The EERY or ERERtag Process generates all the other system
process either directly (via i34 and EEZZds) or indirectly

o Every running process, except [EERd or [Eiidaag has 2 father:
it's the process which he was forked from

@ Every process has a unique numeric identifier called Process
ID (PID): on Linux it's represented as an 16 bit integer




Process handling

Seeing processes

What is currently running?

@ A typical task is to inspect a system to examine which
processes are running

@ This can be done through the s | command

° & provides a list of the running processes, together with
related information (e.g. process status, PID)

@ A visual representation of the family tree of all processes can

be obtained with -




Process handling

Common options

o [EgJ supports multiple syntaxes for the options, we use the
standard one

o B shows every process running
o EIRIERRS shows all the processes running as a certain user
o BB shows the number of threads of every process

o B shows the processes belonging to any user

o [H allows to see processes which are not bound to a terminal

W




Process handling

Interactive listing

A live view of the system

° &2 provides a static snapshot of the running processes

@ In a number of situations it is more helpful to see the
evolution of the system state

@ The - command provides a sequence of dynamic snapshots
° - is an enhanced version of top with more information

@ Both tools periodically refresh the list of processes on screen
o Basically, they keep obtaining the same information as -




Process handling

How do they work?

A(n old) system introspection filesystem

o The information read by 5}/ |/ Eaag comes from the

proc filesystem
o It is a virtual filesystem: nothing is present on the disk

@ When a program tries to list the contents of something in the
proc filesystem, the OS generates these contents from scratch

@ Provides a file-based interface to OS-level informations

o It's Linux specific, but other Unices provide equivalent
mechanisms to access the same pieces of information




Process handling

Managing running processes

Running in the background

@ Running a command from the shell results in the shell waiting
for its completion: this is known as running in foreground

o IR aborts the foreground execution instantly
o IR stops the foreground execution, preserving its state

o Typing . with a stopped program runs it in the background

o Typing [ with a program running in the background, brings
back the execution to the foreground

@ Adding an ] at the end of a command starts the execution in
the background

’




Process Inspection

Process Inspection

Analyzing a live process

@ We now know how to inspect which processes are running
@ Up to now, the processes were (almost) black boxes

@ Time to open the box and see what's inside
@ This can be done via:

o Debuggers ()

o Process tracers (e ey
o File monitoring tools ([T




Process Inspection

Inspecting the execution of a program

The GNU Debugger

@ The GNU Debugger provides a plethora of functions to
inspect the inner working of a program

@ It acts through running the process under exam and tracing
its behaviour via the |t system call

o It is able to alter the memory content of the program at the
human debugger's will

@ You should already be familiar with its working from the first
programming course




Process Inspection

Monitoring syscalls

Coarser grain in monitoring

@ An alternative to per-instruction debugging is analysing the
process at system call level

@ Every process? needs to interact with the operating system

@ It is possible to monitor the parameters and return values of
every system/library call performed by a process

@ Two tracing tools are available [EEaxay (for system calls) and

EEERRY (for library calls)

“or at least any process doing meaningful tasks




Process Inspection

Monitoring syscalls

o Follows the execution of a process and monitors syscalls,

attaching to it via a - call

@ strace by default prints out all the syscalls of a process

@ Since they usually are a LOT -o <filename> redirects to a
file :)

@ -e=group allows you to select only some syscalls relative to a
peculiar function

o process: syscalls concerning process management (e.g. fork)
e network: syscalls concerning network (e.g. connect)

o file: file read/write syscalls, fseek

o signal: signal firing and masking calls




Process Inspection

Reducing the clutter

Useful options

@ The -p <PID> options allows you to attach to a running
process ?

@ The -f option enables the tracing of the child processes
alongside the father

@ The -t option prints out the system time at which the syscall
has been run

“provided you have the permission to do so




Process Inspection

Monitoring dynamic library calls

@ Follows the execution of a process and monitors dynamic
library calls

o T by default prints out all the library calls of a process

@ Shares most options with [EEgaaa SO you can remember them
easily

@ Only traces calls to dynamically linked libraries, no way to
distinguish the ones to statically linked ones




Process Inspection

An overlook on files

A common interface

@ Under UNIX everything is abstracted as a file

@ The prime interface for data communication between
kernelspace and userspace, and among processes are files

@ This implies that all the physical devices are seen as a file by
the programs in userspace

@ Moreover, also sockets are seen as a peculiar type of file

@ Although the library calls are compatible, it is strongly advised
not to mix them (e.g. use [EigRay instead of [EEMe) on a socket




Process Inspection

An overlook on files

Monitoring open files

@ A well designed file monitoring tool is a prime resource to
understand what's happening

@ The ultimate tool for file (i.e. mmapped devices, libraries,
sockets and so on) monitoring is |4

@ The basic use just lists all the open files on a system

@ Depending on the compile time options, [[EIEg may list only
the files of the processes owned by the user




Process Inspection

Reducing clutter, once again

o the IRt option allows to list all the files opened by
any command starting with <string>

o the option allows to list all the files opened by
any command starting with <regex>

o the [ option allows to list all open files in a directory

o the g8 option allows to list all open files of a certain user
@ the options are usually combined with a logical OR
o & switches to AND combining




Process Inspection

Not only files

Monitoring special files

Remember, “Under unix everything is a file":
@ So we can also easily list open and listening sockets!

o the [EEERY option allows to list all the sockets open from-to a
certain IP address

o the @& option prints numeric ports representations
@ the - option allows to list all open files from a precise PID

@ the options may be reversed through prepending the usual |ji




System Management

Managing the running processes

Interacting with the system

@ Up to now we have seen how to investigate the behaviour of a
running system

@ We did not alter it, we just observed what was going on

@ This was done at system level (process tree examination) and
at a finer grain (single process examination)

@ We will now see how to manage the running processes




System Management

Asynchronous communication

@ The prime mechanism in a Unix system to communicate
asynchronous information to a process are signals

@ Signals can be though of as “software generated interrupts”

@ Every process has a signal handlers table acting as the
interrupt handler table

@ The signal handler may choose to ignore the signal, do
something or just fall back to the default action

@ Usually the default action is the termination of the process




System Management

Signals

Here's a list of commonly used signals, together with the default
behaviour:

o AN : terminates the process “gracefully” (file buffers are
flushed and synchronized)

o BB : terminates the process, issued upon a segfault

o [EEEIRY : terminates the process dumping the memory
segment into a Y file

o ST : terminates abruptly the execution [unstoppable]

sets the process in wait state [unstoppable]

resumes the execution of a process



System Management

Issuing signals by hand

The
@ The commandline tool to send signals is aptly named ... S35}

@ The signal to be sent can be specified either by its ID or its
textual mnemonic

@ The issued signals set flags in the fired signal table of the
target process

@ Since signals are resolved when a process is going to be run,
B then shoot signals to die-hard processes

@ Resume them with a |ElEEREY and they'll be gone




System Management

Combining shell commands

Pipes and redirects

@ All the commands from the Unix shell follow the philosophy
“do only one thing”

@ By default they act on SR and output the result on [
@ You can chain commands through the use of the . character

@ You can redirect the output of any command to a file using
the [ character

@ The a pair of grave accents [} will replace what's inside
with the output of it running

@ In-depth shell programming will be tackled further on in this
course




System Management

Eye of the beholder

@ Watching over things is always important

@ Sometimes it'd be useful to have a self refreshing command
out of any command

o BB does exactly the tricks
o EIRTIEEN specifies how often to refreshing

o B highlights the changes from the last time (useful for
spotting tiny changes)



System Management

Bottom line

@ Managing the system will be important during this whole
course

@ A reasonable amount of skill in system management will save
you way more time than the one you have invested in
acquiring it

@ When in doubt on something, do not fear to employ the

system manual (available invoking [T



	Introduction
	Background
	Process handling
	Process Inspection
	System Management

