
UDP and RAW Sockets

Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

alessandro.barenghi - at - polimi.it

April 28, 2015

Recap

By now , you should be familiar with...

The UNIX local socket programming interface

TCP/IPv4 Socket programming

Daemons and Signals

Lesson contents

Overview

Datagram oriented protocol (UDP over IPv4)

Communication over IPv6

Raw UDP packet construction

ICMP ECHO responder, from scratch

Protocol

UDP

Overview

The User Datagram Protocol (UDP): connectionless protocol,
no “session” concept

The transferred data unit is the datagram

No automatic retransmission in case of data loss, nor proper
packet reordering at the receiving endpoint

Known, as a jest, as the Unreliable Datagram Protocol

Protocol

UDP

Applications

Low latency communications: VoIP, Video Streaming, NTP
Protocol

Packet Broadcast: single message sent to all clients of a
network

Single packet query-answer: DNS, DHCP, SNMP and RIP

Resource constrained environments: Trivial FTP Protocol

Implementation

UDP

Primitives

Socket creation is still managed by the same socket primitive

The only change is the use of SOCK DGRAM as socket type

UDP is the result of the combination of SOCK DGRAM with a
AF INET or AF INET6 domain

The binding to a socket in order to listen from it is still done
via a regular bind call

No need for connect or listen calls as there is no connection

Implementation

UDP

Sending

Sending data on a UDP socket is managed by the sendto

primitive :

sendto(int sockfd, const void *buf, size_t len,

int flags, const struct sockaddr *dest_addr,

socklen_t addrlen);

Same first 3 parameters as the send primitive

The dest addr parameter specifies the destination since no
concept of “session” is bound to the socket

Implementation

UDP

Receiving

Analogously, the data are received via the recvfrom primitive :

recvfrom(int sockfd, void *buf, size_t len, int flags,

struct sockaddr *src_addr, socklen_t *addrlen);

Same first 3 parameters as the recv primitive

The src addr parameter specifies source address of the
datagram to be read

Since there is no congestion control, messages from a sender
can be cluttered by the remaining unread traffic

Implementation

UDP

Issues

Collisions among clients : different clients with the same
ephemeral source port may clash

Data loss / reordering : due to network latencies, some
packets sent before may be delivered too late

Simple fix : introducing a trivial acknowledgement mechanism

Sorcerer’s Apprentice Syndrome

TFTP

UDP

TFTP

The Trivial File Transfer Protocol is an UDP based file
transfer protocol

In order to provide minimal transfer warranties, it implements
a simple acknowledgement mechanism:

The client sends a Read/Write ReQuest (RRQ/WRQ) to the
server port 69 to initiate the communication
The server answers with the first data packet to the RRQ or
with an ACK to a WRQ from a fresh ephemeral port
The client sends a numbered ACK in case of a RRQ session or
the first data packet to be written in case of an WRQ
The server sends a numbered ACK for the first data to be
written or the second data packet after receiving the client
packet

TFTP

UDP

TFTP

The TFTP protocol looks reasonably sound :

All the data packets are ACKnowledged upon reception
Packet n + 1 cannot be received if packet n has not been
acknowledged
The server side Ephemeral Port is freshly allocated by the
server (no collisions)

It is in fact widely used for transferring the kernel of a system
performing a network based boot

So, why do we still use TCP based FTP? Can you see the
flaw?

TFTP

UDP

Sorcerer’s Apprentice Syndrome

The reception ordering invariant mandates that packet n + 1
cannot be received if packet n has not been acknowledged....

... but there’s no mention on duplicates!

What if :

The server sends the n-th data packet
The client sends the n-th acknowledgement, which gets
delayed by network issues
The server times out and re-sends the n-th data packet
The client re-acknowledges the reception....

Two duplicated “data streams” are created from a single one

UDP has no congestion control so the situation is bound to
get worse

IPv6

Motivation

The 4th version of the Internet Protocol (IPv4) was conceived
standardized in 1981

At the time , 32 bits for the unique host identifier were
thought to be more than sufficient

Similarly, no mechanism for automatic address assignment
was conceived, and DHCP was later employed to compensate
the lack of it

The protocol was so well designed that it exceeded all its
usefulness expectations, until....

IPv6

Motivation

The IPv4 address space was completely assigned (roughly a
year ago)

The prime solution to this problem is represented by IPv6,
which is being pushed into adoption

The Linux kernel has a stable and well tested IPv6 suite
integrated and all the API are already in place

It is sufficient to switch the type of protocol of a common
AF INET socket and set the addresses accordingly to get an
IPv4 program working on IPv6

Overview

Raw Sockets

Motivation

Raw access to sockets allows full freedom in crafting any kind
of packet

Useful for debugging purposes and testing corner cases

Useful to implement a subset of a defined protocol in
constrained environments

Useful to check the correctness of packet filtering and
mangling tools

Overview

Raw Sockets

Overview

Raw sockets are just common sockets, employed while
disabling any further processing by the kernel

The data sent into a raw socket receives only Level 2
incapsulation and is then sent on Level 1

Due to the intrinsic flexibility of this mechanisms (filtering
policy overriding, IP spoofing...) only root is allowed to use
them

Since the portability of these sockets is an issue, it is strongly
advised to use fixed length and endianness data types from
C99

Implementation

Raw Sockets

How to use them

The socket is initialized with the SOCK RAW socket type macro

After the initialization, the kernel is notified not to rebuild the
IP header via setting the IP HDRINCL via setsockopt

The packet is then crafted by hand by the developer

It is recommended also to correctly compute the header
checksum, even though the packet will be sent anyway

IP Raw header

Raw Sockets

IP Header

Reconstructing the IP header allows the spoofing of any field
of the header, source address included

Care should be taken to set correctly the three IP flags
(Reserved, DF and MF) since they are bit-packed before the
fragmentation offset

The checksum of the packet must be computed after the
whole packet has been put together

UDP Raw Header

Raw Sockets

UDP Header

In order to have a first example of packet crafting, we will be
building an UDP packet

The UDP header imposes only minimal overhead over the
common TCP header

Moreover, the checksum field is allowed to be set to zero
(except if the Level 3 protocol is IPv6)

