
Introduction Background Process handling Process Inspection System Management

System Administration

Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

alessandro.barenghi - at - polimi.it

April 15, 2014

Introduction Background Process handling Process Inspection System Management

Introduction

Why a system administration lesson?

Strong binding between system architecture and network stack

System administration and management skills are required to
“survive” in this environment

As a bonus, they come in handy in a lot of other contexts

They are taken for granted in other courses

Introduction Background Process handling Process Inspection System Management

Chosen Platform

Why Linux?

The chosen platform for the course is GNU/Linux

No restrictions on the redistribution of tools/practice material

The notions easily generalise to affine Unices (f.i. MacOS X)
with minor changes

Any recent Linux distribution is fine for practicing

Introduction Background Process handling Process Inspection System Management

Study methodology

The four letter creed

“Ten minutes of direct practice are worth ten hours of study
in system adminstration”

Pick a distribution and install it in a realistic environment
(real Iron is the best choice)

Debian is an easy shot for beginners
Slackware is extremely clean as far as internal structure goes
Gentoo might not be for the faint of heart, but it’s really
effective as far as learning goes

Begin practicing soon, these notions take time to consolidate

Linux is endowed with an outstanding manual suite available
typing man <command> from a terminal emulator

Introduction Background Process handling Process Inspection System Management

Overview

What you should already know

How to perform basic operations from the commandline
interface (list files, change directory, copy files)

Basic knowledge of the OS from Computer Architecture and
OS course (what is a process, OS inner workings)

Basic knowledge of the underlying hardware, from the same
course (how does a context change take place)

Solid knowledge of the C language fundamentals: the whole
Linux kernel and commandline utilities are written in C

Introduction Background Process handling Process Inspection System Management

Overview

Lesson contents

How to manage the multitasking environment in Linux

How to examine what a program is employing as resources

How to inspect a process running on the system

How to manage a running system in times of trouble

Introduction Background Process handling Process Inspection System Management

Commandline interface

The shell

We will be using a commandline interface to perform all our
tasks as it is the simplest interface

The commandline interpreter, a.k.a. the shell is a program
which runs an infinite loop where:

1 The commands typed in are read and tokenized (= divided in
strings, splitting on spaces) when we press the return key

2 The first token is the name of the program which should be
executed, the others are its parameters

3 The shell performs a fork , and its child exec s the program
with the proper parameters

4 The shell wait s for the end of the execution of the child, and
then accepts a new command

Introduction Background Process handling Process Inspection System Management

Under the hood

Process Tree Structure

In a Linux system the processes are bound by a strict
parent-son family relationship

The boot process, after the kernel has bootstrapped the
machine, yields the control to either init or systemd

The init or systemd process generates all the other system
process either directly (via fork , and exec s) or indirectly

Every running process, except init or systemd has a father:
it’s the process which he was forked from

Every process has a unique numeric identifier called Process
ID (PID): on Linux it’s represented as an 16 bit integer

Introduction Background Process handling Process Inspection System Management

Seeing processes

What is currently running?

A typical task is to inspect a system to examine which
processes are running

This can be done through the ps command

ps provides a list of the running processes, together with
related information (e.g. process status, PID)

A visual representation of the family tree of all processes can
be obtained with pstree

Introduction Background Process handling Process Inspection System Management

Common ps options

Proper use of ps

ps supports multiple syntaxes for the options, we use the
standard one

-e shows every process running

-u <user> shows all the processes running as a certain user

-Lf shows the number of threads of every process

a shows the processes belonging to any user

x allows to see processes which are not bound to a terminal

Introduction Background Process handling Process Inspection System Management

Interactive listing

A live view of the system

ps provides a static snapshot of the running processes

In a number of situations it is more helpful to see the
evolution of the system state

The top command provides a sequence of dynamic snapshots

htop is an enhanced version of top with more information

Both tools periodically refresh the list of processes on screen

Basically, they keep obtaining the same information as ps

Introduction Background Process handling Process Inspection System Management

How do they work?

A(n old) system introspection filesystem

The information read by ps / top / htop comes from the
proc filesystem

It is a virtual filesystem: nothing is present on the disk

When a program tries to list the contents of something in the
proc filesystem, the OS generates these contents from scratch

Provides a file-based interface to OS-level informations

It’s Linux specific, but other Unices provide equivalent
mechanisms to access the same pieces of information

Introduction Background Process handling Process Inspection System Management

Managing running processes

Running in the background

Running a command from the shell results in the shell waiting
for its completion: this is known as running in foreground

CTRL-C aborts the foreground execution instantly

CTRL-Z stops the foreground execution, preserving its state

Typing bg with a stopped program runs it in the background

Typing fg with a program running in the background, brings
back the execution to the foreground

Adding an & at the end of a command starts the execution in
the background

Introduction Background Process handling Process Inspection System Management

Process Inspection

Analyzing a live process

We now know how to inspect which processes are running

Up to now, the processes were (almost) black boxes

Time to open the box and see what’s inside

This can be done via:

Debuggers (gdb)

Process tracers (strace , ltrace , lttng)

File monitoring tools (lsof)

Introduction Background Process handling Process Inspection System Management

Inspecting the execution of a program

The GNU Debugger

The GNU Debugger provides a plethora of functions to
inspect the inner working of a program

It acts through running the process under exam and tracing
its behaviour via the ptrace system call

It is able to alter the memory content of the program at the
human debugger’s will

You should already be familiar with its working from the first
programming course

Introduction Background Process handling Process Inspection System Management

Monitoring syscalls

Coarser grain in monitoring

An alternative to per-instruction debugging is analysing the
process at system call level

Every processa needs to interact with the operating system

It is possible to monitor the parameters and return values of
every system/library call performed by a process

Two tracing tools are available strace (for system calls) and
ltrace (for library calls)

aor at least any process doing meaningful tasks

Introduction Background Process handling Process Inspection System Management

Monitoring syscalls

strace

Follows the execution of a process and monitors syscalls,
attaching to it via a ptrace call

strace by default prints out all the syscalls of a process

Since they usually are a LOT -o <filename> redirects to a
file :)

-e=group allows you to select only some syscalls relative to a
peculiar function

process: syscalls concerning process management (e.g. fork)
network: syscalls concerning network (e.g. connect)
file: file read/write syscalls, fseek
signal: signal firing and masking calls

Introduction Background Process handling Process Inspection System Management

Reducing the clutter

Useful options

The -p <PID> options allows you to attach to a running
processa

The -f option enables the tracing of the child processes
alongside the father

The -t option prints out the system time at which the syscall
has been run

aprovided you have the permission to do so

Introduction Background Process handling Process Inspection System Management

Monitoring dynamic library calls

ltrace

Follows the execution of a process and monitors dynamic
library calls

ltrace by default prints out all the library calls of a process

Shares most options with strace , so you can remember them
easily

Only traces calls to dynamically linked libraries, no way to
distinguish the ones to statically linked ones

Introduction Background Process handling Process Inspection System Management

An overlook on files

A common interface

Under UNIX everything is abstracted as a file

The prime interface for data communication between
kernelspace and userspace, and among processes are files

This implies that all the physical devices are seen as a file by
the programs in userspace

Moreover, also sockets are seen as a peculiar type of file

Although the library calls are compatible, it is strongly advised
not to mix them (e.g. use write instead of send) on a socket

Introduction Background Process handling Process Inspection System Management

An overlook on files

Monitoring open files

A well designed file monitoring tool is a prime resource to
understand what’s happening

The ultimate tool for file (i.e. mmapped devices, libraries,
sockets and so on) monitoring is lsof

The basic use just lists all the open files on a system

Depending on the compile time options, lsof may list only
the files of the processes owned by the user

Introduction Background Process handling Process Inspection System Management

Reducing clutter, once again

lsof options

the -c <string> option allows to list all the files opened by
any command starting with <string>

the -c /<regex>/ option allows to list all the files opened by
any command starting with <regex>

the +D option allows to list all open files in a directory

the -u option allows to list all open files of a certain user

the options are usually combined with a logical OR

-a switches to AND combining

Introduction Background Process handling Process Inspection System Management

Not only files

Monitoring special files

Remember, “Under unix everything is a file”:

So we can also easily list open and listening sockets!

the -i @IP option allows to list all the sockets open from-to a
certain IP address

the -P option prints numeric ports representations

the -p option allows to list all open files from a precise PID

the options may be reversed through prepending the usual ^

Introduction Background Process handling Process Inspection System Management

Managing the running processes

Interacting with the system

Up to now we have seen how to investigate the behaviour of a
running system

We did not alter it, we just observed what was going on

This was done at system level (process tree examination) and
at a finer grain (single process examination)

We will now see how to manage the running processes

Introduction Background Process handling Process Inspection System Management

Asynchronous communication

Signals

The prime mechanism in a Unix system to communicate
asynchronous information to a process are signals

Signals can be though of as “software generated interrupts”

Every process has a signal handlers table acting as the
interrupt handler table

The signal handler may choose to ignore the signal, do
something or just fall back to the default action

Usually the default action is the termination of the process

Introduction Background Process handling Process Inspection System Management

Signals

Here’s a list of commonly used signals, together with the default
behaviour:

SIGTERM : terminates the process “gracefully” (file buffers are
flushed and synchronized)

SIGSEGV : terminates the process, issued upon a segfault

SIGQUIT : terminates the process dumping the memory
segment into a core file

SIGKILL : terminates abruptly the execution [unstoppable]

SIGSTOP : sets the process in wait state [unstoppable]

SIGCONT : resumes the execution of a process

Introduction Background Process handling Process Inspection System Management

Issuing signals by hand

The kill

The commandline tool to send signals is aptly named ... kill

Common syntax: kill <signal> [options]

The signal to be sent can be specified either by its ID or its
textual mnemonic

The issued signals set flags in the fired signal table of the
target process

Since signals are resolved when a process is going to be run,
STOP then shoot signals to die-hard processes

Resume them with a SIGCONT and they’ll be gone

	Introduction
	Background
	Process handling
	Process Inspection
	System Management

