
Character Devices

Device Drivers

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

alessandro.barenghi - at - polimi.it

June 3, 2014



Character Devices

Communications with the real world

Devices

In order to expose a unified interface for communication with
the hardware, the kernel exposes devices

Following the UNIX philosophy, the devices are seen in
userspace as simple files

It is possible to either expose a real device via a
block/character interface (e.g. /dev/sda)

Or to build a mockup device which may be useful (/dev/zero)

A simpler alternative, if there is only the need to communicate
between userspace and kernelspace is the debug filesystem



Character Devices

Communications with the real world

Quick debugging I/O

Originally, the proc filesystem served as both a quick
debugging interface and to expose a parameter passing
interface to the kernel parts

In the current Linux Kernels, these two roles have been split
and implemented in the DebugFS and SysFS respectively

It is thus possible to obtain a quick, file based communication
interface through creating a file in DebugFS

The read/write callbacks must be implemented by the module
developer and handle the common read/write operations on
the file

A directory structure can be easily created via the exposed
API to organize the output



Character Devices

Communications with the real world

Copying to- and from- userspace

One key point in user-kernel communication is copying data
across different address spaces

Despite some architectures (e.g. x86 64) map the kernel at
the end of the process address space after the stack, some
won’t → the copies may need address translation from one
virtual address to another

Two ways to perform copies are available in kspace:

get user(val, ptr) and put user(val,ptr) are quick
macros which are able to copy a single value with the same
type of the pointer ptr into val

copy from user and copy to user are actual functions
performing like memcpy with integrated address translation



Character Devices

Communications with the real world

A real device

A real character device needs to implement all the possible
operations which can be performed on it

Moreover, it is required to handle the number of stakeholders
which are actually using the device to avoid improper removal
of the module

The devices are accessible from the userspace via a peculiar
filesystem entry, which does not have any actual space
reserved on disk known as device node

Real devices are split into :

Character devices: minimum unit for access : single character
(one byte), usually unbuffered
Block devices: minimum unit for access : a block of data (a
contiguous chunk in the kB size range), usually buffered



Character Devices

Communications with the real world

Device implementation

We will see the implementation of a mockup character devicea

A character device needs to implement at least four key
primitives : open,read,write and release

It also needs to take into account whether someone is using
the device in order to prevent premature module removal

The transferral of the data from kernel to user address space
is managed by the put user primitive

aBlock devices go the same way, just with more functionalities



Character Devices

Communications with the real world

Device node setup

Once a device has been registered into Linux’s device tree, its
interface should be made available to users

Three methods are available, depending on the degree of
automation you desire, and the init system of your choice

Manual creation of the device node via mknod

Automatic device creation via udev

Device handling via a systemd unit



Character Devices

Communications with the real world

Node setup

A device node can be created via the mknod utility and needs
three parameters

The type of the device (block or character device)
The major number, i.e. a unique, kernel assigned, identifier for
the device
The minor number, a sub-index handled by the module
answering for that device in kernelspace

A list of all the devices exported by the kernel is available via
/proc/devices



Character Devices

Communications with the real world

udevd

The udevd daemon is in charge of monitoring which devices
are registered and act according to predefined rules

The most typical example is automatic mounting/unmounting
of filesystems upon disk insertion (e.g. with USB thumb
drives)

udevd reads a set of text files, the rules, usually located in
/etc/udev/rules.d

Upon triggering of a rule (e.g. device registration) udevd

automatically creates the node file with the specified
permissions


	Character Devices

