Alessandro Barenghi
Dipartimento di Elettronica e Informazione
Politecnico di Milano

alessandro.barenghi - at - polimi.it

June 3, 2014




Character Devices

Communications with the real world

Devices

@ In order to expose a unified interface for communication with
the hardware, the kernel exposes devices

@ Following the UNIX philosophy, the devices are seen in
userspace as simple files

@ It is possible to either expose a real device via a
block/character interface (e.g. /dev/sda)

@ Or to build a mockup device which may be useful (/dev/zero)

@ A simpler alternative, if there is only the need to communicate
between userspace and kernelspace is the debug filesystem

v




Character Devices

Communications with the real world

Quick debugging 1/0

@ Originally, the proc filesystem served as both a quick
debugging interface and to expose a parameter passing
interface to the kernel parts

@ In the current Linux Kernels, these two roles have been split
and implemented in the DebugFS and SysFS respectively

o It is thus possible to obtain a quick, file based communication
interface through creating a file in DebugFS

@ The read/write callbacks must be implemented by the module
developer and handle the common read/write operations on
the file

@ A directory structure can be easily created via the exposed
API to organize the output




Character Devices

Communications with the real world

Copying to- and from- userspace

@ One key point in user-kernel communication is copying data
across different address spaces

@ Despite some architectures (e.g. x86-64) map the kernel at
the end of the process address space after the stack, some
won't — the copies may need address translation from one
virtual address to another

@ Two ways to perform copies are available in kspace:

macros which are able to copy a single value with the same
type of the pointer | into KN

and are actual functions
performing like with integrated address translation




Character Devices

Communications with the real world

A real device

@ A real character device needs to implement all the possible
operations which can be performed on it

@ Moreover, it is required to handle the number of stakeholders
which are actually using the device to avoid improper removal
of the module

@ The devices are accessible from the userspace via a peculiar
filesystem entry, which does not have any actual space
reserved on disk known as device node

@ Real devices are split into :

o Character devices: minimum unit for access : single character
(one byte), usually unbuffered

o Block devices: minimum unit for access : a block of data (a
contiguous chunk in the kB size range), usually buffered




Character Devices

Communications with the real world

Device implementation

@ We will see the implementation of a mockup character device?

@ A character device needs to implement at least four key
SUTNTEIESR open, read, write [ENIN release

@ It also needs to take into account whether someone is using
the device in order to prevent premature module removal

@ The transferral of the data from kernel to user address space
is managed by the - primitive

“Block devices go the same way, just with more functionalities




Character Devices

Communications with the real world

Device node setup

@ Once a device has been registered into Linux's device tree, its
interface should be made available to users

@ Three methods are available, depending on the degree of
automation you desire, and the init system of your choice

o Manual creation of the device node via [iaage
o Automatic device creation via [l

o Device handling via a - unit




Character Devices

Communications with the real world

@ A device node can be created via the [Eitage utility and needs
three parameters
o The type of the device (block or character device)
o The major number, i.e. a unique, kernel assigned, identifier for
the device
o The minor number, a sub-index handled by the module
answering for that device in kernelspace

@ A list of all the devices exported by the kernel is available via




Character Devices

Communications with the real world

o The [FEEE] daemon is in charge of monitoring which devices
are registered and act according to predefined rules

@ The most typical example is automatic mounting/unmounting
of filesystems upon disk insertion (e.g. with USB thumb
drives)

o B} reads a set of text files, the rules, usually located in

@ Upon triggering of a rule (e.g. device registration) |FEEg
automatically creates the node file with the specified
permissions




	Character Devices

