
Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Kernel Module Programming

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

alessandro.barenghi - at - polimi.it

May 27, 2014

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Linux

A bit of history

The Linux kernel development started back in 1991

The first release was developed to have a working, simple OS,
no strings attached

In 25yrs, the codebase has grown from 140k LOC to 14M LOC

At the moment, the most used monolithic kernel around

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Macrokernel

Monolith and modules

The Linux kernel is based on a monolithic structure and is
fully written in Ca

C does not enforce symbol namespaces, however they have
been recently introduced as an overlay

The whole code runs with the highest possible privileges on
the CPU (the so-called supervisor mode)

Simple, performing but with some safety issues (concurrency
handling)

Microkernel alternatives have a different structure, but
choosing one or the other strategy is a long standing issue

aplus some assembly for the syscalls/drivers backend obviously

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Macrokernel

Key areas

The Linux kernel is logically split in 6 master areas

System management : bootup, shutdown, syscall interfaces
Process management : scheduling, inner locks and mutexes,
synchronization primitives
Memory management : Memory allocator, page handler,
virtual memory mapper
Storage management : file access primitives, virtual filesystem
management, logic filesystem management and disk handling
Networking management : network syscalls, socket bufffer
handling, protocol and filtering handling, network drivers
User Interaction management : character devices, security
management, process tracing management and HI devices
management

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Module structure

What’s in a module

A kernel module is a binary blob, which can be linked at
insertion time with the whole kernel

Think of it as a sort of a “strange” static library

The linking is performed only against kernel symbols: no libc
around here...

Particular care should be exercised before calling kernel
symbols prefixed by a double underscore, as they represent
lower level functions

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Module structure

Differences from processes

The module is not “run” but rather called when its services
are needed (similar to event based programming)

There is no regular dynamic memory allocator, as we are
directly on the fence side where physical memory can be
accessed

There is no automatic cleanup when a module is removed,
noone will free memory, noone will rebind the things as they
were before

Albeit there is a concept of “running” process, it is almost
impossible to understand what calls you

No floating point operations available, sorry

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

A simple module

Contents

A module is constituted of one (or more) C files, containing a
collection of functions

Two functions are mandatory

init module performs all the initializations of the resources at
insertion time
cleanup module performs the pre-removal cleanup

All the variables declared in the global scope of the module
are actually residing in kernel memory

The stack of the module is shared with all the others kernel
functions (i.e. the kernel has a single stack) and it’s rather
small

Dynamic memory allocation encouraged for large variables as
they would clutter the stack

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

A simple module

Building

In order to build a module,you just need the usual gcc

compiler

To specify that a kernel module object must be built, the
obj-m target is used in the Makefile

You will need at least the Linux kernel header files to compile
a modulea

If you are planning to do heavy modifications, the full kernel
source tree may come in handy

aavailable as a handy package under almost every linux distribution

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

A simple module

Module Management

Once a module has been successfully built, you can check
informations about it via the modinfo command

Module insertion is performed via the insmod command,
while removal is done via rmmod

You can obtain a list of the inserted modules via the lsmod

command

It is pretty obvious that only root can insert and remove
kernel modules

The kernel ring buffer (where log messages appear) can be
accessed via the dmesg command

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

A simple module

Licensing and Author

Every module has an author (to be blamed or praised) and is
released under a specific license

Beside the purely legal issues, module licensing affects the
behaviour of the kernel at insertion time

It is commonly said (and tools will report so) that a non
GPL-licensed module will “taint” the kernel

In particular, as the non GPL modules may not be available
for source code inspection some debugging facilities may be
disabled

Moreover, bug and compatibility issues with tainting modules
are dealt less readily by the kernel development team

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

A simple module

Parameter passing

It is possible to pass parameters to a module at insertion time

The parameter parsing is done according to the call to the
module param primitive

The module param primitive accepts the name of the
parameter, the type and the permission for changing it, if it
will be exposed via sysfs

It is possible also to pass arrays as parameters via the
module param array function

The module param array behaves in a similar way to the
argc - argv mechanism in userspace programs

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Dynamic Memory allocation

kmalloc

The most simple way to get dynamic memory in kernelspace is
the use of the kmalloc primitive

The primitive directly calls the get free pages function
appropriately, so space is available only in page sized chunks

There is an upper limit for the maximum size of a kmalloc :
portable code should not use more than 128kB per shot

The kmalloc primitive can be invoked with different flags to
steer the behaviour of the memory allocator, in particular

GFP KERNEL is the default behaviour flag, may block and put
to sleep the current process
GFP ATOMIC is specifies that the current process should not be

put to sleep and can claim up to the last page available

kfree frees the memory claimed with kmalloc

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Dynamic Memory allocation

vmalloc

If you are not in need of physically contiguous memory, you
may use the vmalloc primitive

The vmalloc calls the page handler at a higher level resulting
in an allocation of an arbitrarily large amount of memory

Since the call depth is greater than kmalloc , vmalloc is
obviously less performing that kmalloc

As before, you can (and must)free the memory via vfree

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Concurrency handling

Concurrency issues

As we now know, the Linux kernel is one large monolith as far
as the running code goes with the same address space
accessible for all the modules

Once upon a long time ago, when the systems had a single
processor and the kernel structure was simpler, only one task
would have been executed at once in kernelspace

Still, hardware interrupts could get in the way of atomic
operations being performed

Then multiprocessor system started being supported back in
1996, starting to cause the first, serious concurrency issues

The whole thing got a lot worse when the whole kernel
became preemptible with the 2.6 series (around mid 2002 with
2.5.37)

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Concurrency issues

Solutions available

As the concurrency issues are pretty serious, the kernel offers
native facilities to prevent problems

Fully atomic variables are available

Semaphore-structures were implemented since a long time ago

Spinlocks represent the main difference between userspace and
kernelspace concurrency handling mechanisms (used most of
the time)

Read-Copy-Update mechanisms are available to provide
advanced and performant concurrency handling (especially
useful for NetFilter)

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Concurrency issues

Atomic Variables

In case the resource which may be shared among different
kernel parts is a simple integer

In this case, it is possible to avoid complex concurrency
handling structures via the use of atomic variables

The atomic [set|add|inc|dec|sub] provide the means to
atomically perform that operation on the integer value

Operations on atomic variables are usually extremely fast, as
they are compiled as single assembly instructions if the
architecture allows so

A companion primitive set is the atomic * and test group
which check if the operation was correctly performed
afterwards and are useful to implement election mechanisms

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Concurrency issues

Spinlocks

Spinlocks are mutual exclusion primitives akin to common
mutexes

The main difference is that a spinlock will never be put to
sleep until it gains access to the resource

Spinlocks are structures of spinlock t type (defined in
spinlock.h)

Different locking and unlocking functions are available

spin lock and spin unlock are the garden variety spinlock

spin lock irqsave and spin unlock irqsave will mask
hardware interrupts and restore the IV state after the lock has
been resolved
spin lock bh and spin unlock bh only mask software

interrupts

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Lock- and Wait- freedom

Overview

In synchronization mechanisms, a key issue is preventing
deadlocks: a deadlock is a state of the computation where the
access to the resources is prevented due to a circular
dependence in the access

If a mechanism warrants that every entity will access a
protected region, it is called lock-free

In case the access will necessarily happen within a bounded
number of steps, it is also defined as wait-free

Lock-freedom warrants that a system will not hang,
wait-freedom that noone will starve (i.e. that access to a
resource is possible in a bounded amount of time)

Only a few wait free algorithms are known in literature: we
will tackle circular buffers and read-copy-update mechanisms

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Circular buffers

Overview

Circular buffers are a memorisation structure which can be
accessed in a lockless, wait-free fashion

The key idea is that a memory buffer is thought of as circular
instead of the common linear form

This implies that writing beyond the end of the buffer starts
writing back from the beginning

The most common implementation involves two cursors, one
pointing to the beginning of the valid data, the other to the
end

Key element: can be implemented even without atomic
variables

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Circular buffers

Typical actions

Only one reader or writer is admitted to the structure; the
structure is lock free as no possible deadlocks can happen

Reader: the reader accesses the buffer reading the pointers
first. Once the boundaries are known, the read access will be
safe.

Writer: the writer reads the boundaries, performs the writing
action and finally updates the end pointer.

Deletion from the buffer is managed moving forward the start
pointer (no explicit need to blank the memory cells)

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Circular buffers

Distinguishing between full and empty

A B 56 7 8 9

START

END

START

END

FULL

EMPTY

Figure: It is not possible to distinguish between a full and an empty buffer

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Circular buffers

Issues and solutions

Possible solutions to distinguish a full from an empty buffer
are:

Use integer indexes instead of pointers: no extra variables
needed, but each access to the structure costs a moduloa

operation as the indexes are constantly incremented
Use a fill counter: requires greater care when the write
operations wrap around the buffer, but saves a variable (end
pointer) and simplifies fullness test
Always keep one cell open: never fill up the last free cell and
declare the buffer full before: loses a little space at the cost of
no computational/space overhead (chosen in Linux kernel
implementation)

aThis reduces to a bitwise mask if the length of the buffer is 2n

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Circular buffers

Linux Kernel implementation

Implementing a circular buffer is rather straightforward, you
can cook your own soup (although this is not advised)

Linux kernel offers a standard three pointer structure to
uniform the implementation in circ buf.h

The header also includes a couple of helper macros

CIRC CNT : returns the used space in the buffer
CIRC SPACE : returns the free space in the buffer
CIRC CNT TO END : returns the used slot count up to the

(linear) end of the buffer
CIRC SPACE TO END : return the space count up to the (linear)

end of the buffer

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read-Copy-Update

Overview

Fully wait-free reads (with multiple readers) and wait-free
write (one writer only) is achievable via Read-Copy-Update
constructs

RCUs are a relatively recent (2006) strategy to avoid update
conflicts on a shared variable

They are now implemented in both the Linux kernel and as a
user space available library liburcu and their use is advised
whenever a variable is shared among many readers, while
being updated by a few writers

The key idea is to decouple the writing phase from the
removal of the old data, avoiding syncronization issues

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Roles

Key Idea: the writer makes a copy of the value he wants to
update updates the copy which is added to the structure in a
second time

The readers are provided a lock on the last, fully updated,
copy of the data, no risks of read hazards are possible

In the regular working of RCUs there are three key roles :

Reader: The reader is pointed to the last stable version of the
data, this data is not deleted until the reader has finished
reading
Updater: The updater needs to change the data: it is allowed
to do so on a shadow copy which is linked to the structure in a
second time
Reclaimer: The reclaimer is in charge of swapping the old data
with the fresh ones only when there are no longer any readers
locking the old

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU Insertion

gptr

km
al

lo
c(

)

->a=?
->b=?
->c=?

gptr

in
it

ia
liz

at
io

n

->a=1
->b=2
->c=3

gptr

rc
u_

as
si

gn
_p

oi
nt

er
(g

pt
r,

p)

->a=1
->b=2
->c=3

gptr

p p p

(1) (2) (3) (4)

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU Deletion

Re
ad

er
s?

A

B

C

(1)

Re
ad

er
s?

1
V

er
si

on

A

C

B

(2)

Re
ad

er
s?

2
V

er
si

on
s

A

C

B

(3)

1
V

er
si

on

A

C

(4)

1
V

er
si

on

w
ai

t f
or

 r
ea

de
rs

fr
ee

()

lis
t_

de
l_

rc
u(

)

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Pros and Cons

RCUs provide a very fast, lockless, read access to many
readers, even in concurrency to a pointer based structure

It is critical that only a single updater at a time acts on it

The updater can immediately write the update on his personal
shadow copy, so the action will finish in a limited amount of
time (wait-free)

The whole structure can be implemented without the use of
atomic variables

On non-preemptible kernels, the reader lock of the RCU does
not need to be performed (the compiler does not emit any
code for the lock function): all the read actions are completed
within the time quantum

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU

The Linux kernel offers a full fledged, simple RCU API:

rcu read lock() / rcu read unlock() allow the readers to
assert a lock on a specific version of the data
rcu dereference() and rcu assign pointer() allow the

updater to access properly the data to be updated
synchronize rcu() Allows to wait until all the pre-existing

RCU read critical sections have completed
call rcu() Sets up a callback function to be invoked when all

the read locks expire : this allows the updater to move on with
other tasks leaving the RCU reclaimer safely in background

The same APIs are available in both garden variety and soft
IRQ blocking flavour via adding a bh suffix to the call name

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU Visual summary

UpdaterReader

Reclaimer

rcu_dereference()

rcu_assign_pointer()

rcu_read_lock()
rcu_read_unlock()

call_rcu()

synchronize_rcu()

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Communications with the real world

Devices

In order to expose a unified interface for communication with
the hardware, the kernel exposes devices

Following the UNIX philosophy, the devices are seen in
userspace as simple files

It is possible to either expose a real device via a
block/character interface (e.g. /dev/sda)

Or to build a mockup device which may be useful (/dev/zero)

A simpler alternative, if there is only the need to communicate
between userspace and kernelspace is the debug filesystem

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Communications with the real world

Quick debugging I/O

Originally, the proc filesystem served as both a quick
debugging interface and to expose a parameter passing
interface to the kernel parts

In the current Linux Kernels, these two roles have been split
and implemented in the DebugFS and SysFS respectively

It is thus possible to obtain a quick, file based communication
interface through creating a file in DebugFS

The read/write callbacks must be implemented by the module
developer and handle the common read/write operations on
the file

A directory structure can be easily created via the exposed
API to organize the output

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Communications with the real world

A real device

A real character device needs to implement all the possible
operations which can be performed on it

Moreover, it is required to handle the number of stakeholders
which are actually using the device to avoid improper removal
of the module

The devices are accessible from the userspace via a peculiar
filesystem entry, which does not have any actual space
reserved on disk known as device node

Real devices are split into :

Character devices: minimum unit for access : single character
(one byte), usually unbuffered
Block devices: minimum unit for access : a block of data (a
contiguous chunk in the kB size range), usually buffered

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Communications with the real world

Device implementation

We will see the implementation of a mockup character devicea

A character device needs to implement at least four key
primitives : open,read,write and release

It also needs to take into account whether someone is using
the device in order to prevent premature module removal

The transferral of the data from kernel to user address space
is managed by the put user primitive

aBlock devices go the same way, just with more functionalities

Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Synchronize without starving Character Devices

Communications with the real world

Node setup

A device node can be created via the mknod utility and needs
three parameters

The type of the device (block or character device)
The major number, i.e. a unique, kernel assigned, identifier for
the device
The minor number, a sub-index handled by the module
answering for that device in kernelspace

A list of all the devices exported by the kernel is available via
/proc/devices

It is possible also to avoid static devices via the udev
filesystem, which is automatically populated by the kernela

asay, the partitions of a hard disk

	Kernel Structure
	Kernel Modules vs Processes
	A Simple Module
	Concurrency handling
	Synchronize without starving
	Character Devices

