
Introduction Synchronize without starving Character Devices

Kernel Module Programming - 2

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

June 7, 2012



Introduction Synchronize without starving Character Devices

Recap

By now , you should be familiar with...

Programming with sockets employing different protocols

System programming, synchronization primitives and IPC

System administration skills , as far as the local host and
network monitoring go

Network administration and filtering, tunnels and NAT



Introduction Synchronize without starving Character Devices

Lesson contents

Overview

Circular Buffers

Read-Copy-Updates (RCUs)

DebugFS

A character device



Introduction Synchronize without starving Character Devices

Lock- and Wait- freedom

Overview

In synchronization mechanisms, a key issue is preventing
deadlocks: a deadlock is a state of the computation where the
access to the resources is prevented due to a circular
dependence in the access

If a mechanism warrants that every entity will access a
protected region, it is called lock-free

In case the access will necessarily happen within a bounded
number of steps, it is also defined as wait-free

Lock-freedom warrants that a system will not hang,
wait-freedom that noone will starve (i.e. that access to a
resource is possible in a bounded amount of time)

Only a few wait free algorithms are known in literature: we
will tackle circular buffers and read-copy-update mechanisms



Introduction Synchronize without starving Character Devices

Circular buffers

Overview

Circular buffers are a memorisation structure which can be
accessed in a lockless, wait-free fashion

The key idea is that a memory buffer is thought of as circular
instead of the common linear form

This implies that writing beyond the end of the buffer starts
writing back from the beginning

The most common implementation involves two cursors, one
pointing to the beginning of the valid data, the other to the
end

Key element: can be implemented even without atomic
variables



Introduction Synchronize without starving Character Devices

Circular buffers

Typical actions

Only one reader or writer is admitted to the structure; the
structure is lock free as no possible deadlocks can happen

Reader: the reader accesses the buffer reading the pointers
first. Once the boundaries are known, the read access will be
safe.

Writer: the writer reads the boundaries, performs the writing
action and finally updates the end pointer.

Deletion from the buffer is managed moving forward the start
pointer (no explicit need to blank the memory cells)



Introduction Synchronize without starving Character Devices

Circular buffers

Distinguishing between full and empty

A B 56 7 8 9

START

END

START

END

FULL

EMPTY

Figure: It is not possible to distinguish between a full and an empty buffer



Introduction Synchronize without starving Character Devices

Circular buffers

Issues and solutions

Possible solutions to distinguish a full from an empty buffer
are:

Use integer indexes instead of pointers: no extra variables
needed, but each access to the structure costs a moduloa

operation as the indexes are constantly incremented
Use a fill counter: requires greater care when the write
operations wrap around the buffer, but saves a variable (end
pointer) and simplifies fullness test
Always keep one cell open: never fill up the last free cell and
declare the buffer full before: loses a little space at the cost of
no computational/space overhead (chosen in Linux kernel
implementation)

aThis reduces to a bitwise mask if the length of the buffer is 2n



Introduction Synchronize without starving Character Devices

Circular buffers

Linux Kernel implementation

Implementing a circular buffer is rather straightforward, you
can cook your own soup (although this is not advised)

Linux kernel offers a standard three pointer structure to
uniform the implementation in circ buf.h

The header also includes a couple of helper macros

CIRC CNT : returns the used space in the buffer
CIRC SPACE : returns the free space in the buffer
CIRC CNT TO END : returns the used slot count up to the
(linear) end of the buffer
CIRC SPACE TO END : return the space count up to the (linear)
end of the buffer



Introduction Synchronize without starving Character Devices

Read-Copy-Update

Overview

Fully wait-free reads (with multiple readers) and wait-free
write (one writer only) is achievable via Read-Copy-Update
constructs

RCUs are a relatively recent (2006) strategy to avoid update
conflicts on a shared variable

They are now implemented in both the Linux kernel and as a
user space available library liburcu and their use is advised
whenever a variable is shared among many readers, while
being updated by a few writers

The key idea is to decouple the writing phase from the
removal of the old data, avoiding syncronization issues



Introduction Synchronize without starving Character Devices

Read Copy Update

Roles

Key Idea: the writer makes a copy of the value he wants to
update updates the copy which is added to the structure in a
second time

The readers are provided a lock on the last, fully updated,
copy of the data, no risks of read hazards are possible

In the regular working of RCUs there are three key roles :

Reader: The reader is pointed to the last stable version of the
data, this data is not deleted until the reader has finished
reading
Updater: The updater needs to change the data: it is allowed
to do so on a shadow copy which is linked to the structure in a
second time
Reclaimer: The reclaimer is in charge of swapping the old data
with the fresh ones only when there are no longer any readers
locking the old



Introduction Synchronize without starving Character Devices

Read Copy Update

Pros and Cons

RCUs provide a very fast, lockless, read access to many
readers, even in concurrency to a pointer based structure

It is critical that only a single updater at a time acts on it

The updater can immediately write the update on his personal
shadow copy, so the action will finish in a limited amount of
time (wait-free)

The whole structure can be implemented without the use of
atomic variables

On non-preemptible kernels, the reader lock of the RCU does
not need to be performed (the compiler does not emit any
code for the lock function): all the read actions are completed
within the time quantum



Introduction Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU

The Linux kernel offers a full fledged, simple RCU API:

rcu read lock() / rcu read unlock() allow the readers to
assert a lock on a specific version of the data
rcu dereference() and rcu assign pointer() allow the
updater to access properly the data to be updated
synchronize rcu() Allows to wait until all the pre-existing
RCU read critical sections have completed
call rcu() Sets up a callback function to be invoked when all
the read locks expire : this allows the updater to move on with
other tasks leaving the RCU reclaimer safely in background

The same APIs are available in both garden variety and soft
IRQ blocking flavour via adding a bh suffix to the call name



Introduction Synchronize without starving Character Devices

Read Copy Update

Linux Kspace RCU Visual summary

UpdaterReader

Reclaimer

rcu_dereference()

rcu_assign_pointer()

rcu_read_lock()
rcu_read_unlock()

call_rcu()

synchronize_rcu()



Introduction Synchronize without starving Character Devices

Communications with the real world

Devices

In order to expose a unified interface for communication with
the hardware, the kernel exposes devices

Following the UNIX philosophy, the devices are seen in
userspace as simple files

It is possible to either expose a real device via a
block/character interface (e.g. /dev/sda)

Or to build a mockup device which may be useful (/dev/zero)

A simpler alternative, if there is only the need to communicate
between userspace and kernelspace is the debug filesystem



Introduction Synchronize without starving Character Devices

Communications with the real world

Quick debugging I/O

Originally, the proc filesystem served as both a quick
debugging interface and to expose a parameter passing
interface to the kernel parts

In the current Linux Kernels, these two roles have been split
and implemented in the DebugFS and SysFS respectively

It is thus possible to obtain a quick, file based communication
interface through creating a file in DebugFS

The read/write callbacks must be implemented by the module
developer and handle the common read/write operations on
the file

A directory structure can be easily created via the exposed
API to organize the output



Introduction Synchronize without starving Character Devices

Communications with the real world

A real device

A real character device needs to implement all the possible
operations which can be performed on it

Moreover, it is required to handle the number of stakeholders
which are actually using the device to avoid improper removal
of the module

The devices are accessible from the userspace via a peculiar
filesystem entry, which does not have any actual space
reserved on disk known as device node

Real devices are split into :

Character devices: minimum unit for access : single character
(one byte), usually unbuffered
Block devices: minimum unit for access : a block of data (a
contiguous chunk in the kB size range), usually buffered



Introduction Synchronize without starving Character Devices

Communications with the real world

Device implementation

We will see the implementation of a mockup character devicea

A character device needs to implement at least four key
primitives : open,read,write and release

It also needs to take into account whether someone is using
the device in order to prevent premature module removal

The transferral of the data from kernel to user address space
is managed by the put user primitive

aBlock devices go the same way, just with more functionalities



Introduction Synchronize without starving Character Devices

Communications with the real world

Node setup

A device node can be created via the mknod utility and needs
three parameters

The type of the device (block or character device)
The major number, i.e. a unique, kernel assigned, identifier for
the device
The minor number, a sub-index handled by the module
answering for that device in kernelspace

A list of all the devices exported by the kernel is available via
/proc/devices

It is possible also to avoid static devices via the udev
filesystem, which is automatically populated by the kernela

asay, the partitions of a hard disk


	Introduction
	Synchronize without starving
	Character Devices

