
Introduction Signals Safe Multiplexing

Linux Signals and Daemons

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

May 17, 2012

Introduction Signals Safe Multiplexing

Recap

By now , you should be familiar with...

The UNIX local socket programming interface

Locking and synchronization mechanisms

A hint on signal handling under POSIX compliant Unices

TCP/IP Socket programming

Introduction Signals Safe Multiplexing

Lesson contents

Overview

Asynchronous interruption mechanisms

Signal issuing and handling

Signal masking

Signal safe multiplexing

Introduction Signals Safe Multiplexing

Signals

Overview

Signals are practically implemented as software triggered
interrupts

We have already seen the system utility employed to raise
signals (kill)

We will now understand how to manage signals from within a
program

We will also deal on how the delivery of signals in order to
obtain interrupt free sections

Introduction Signals Safe Multiplexing

Interrupts

Software what?

Interrupts are events altering the regular execution of a
program by a processor

Can be caused by :

Illegal operations (e.g. divide by zero)
Invalid opcodes in the binary
Page faults
Software triggers (debuggers)

The interruption of the program is instantaneous, thus process
context saving issues occur

Introduction Signals Safe Multiplexing

Interrupts

Interrupt table

Interrupt occours → interrupt handler is called and:

Immediately executed in case of hardware interrupts or...
Scheduled for execution immediate execution when the process
resumes

Pointer to interrupt handlers are stored in an interrupt table

x86(64) has 256 of them, the first one is reserved for
hardware interrupts

Linux employs the 128th to store the signal handlers for the
process (int 0x80)

Introduction Signals Safe Multiplexing

Interrupts

Interrupt Handling

In order to handle an interrupt, the control unit of the CPU:

Finds the correct interrupt vector and determines which entry
has been triggered
Checks if the interrupts handler requires a change in the
privilege level
Saves the process context (registers content and program
status word)
Loads the interrupt handler entry point and sets correctly
segment selector and offsets
The handler is finally run :)

Interrupts can be blocked through setting a proper flag in the
control unit, creating interruption safe regions

Introduction Signals Safe Multiplexing

Signals

Signal Handling

Signal handling mimicks interrupt handling :

Every process has an associated region of the process
descriptor to track the signals sent to him
Upon sending a signal, the kernel updates the process
descriptor of the destination process
The signal is received as soon as the process is selected for
execution
Before the process is run, the kernel checks if there are any
pending signal to be run
If the signals are not blocked, the process execution resumes
from the handler instead of the previous state
This is repeated until all the pending signals have been dealt
with

Introduction Signals Safe Multiplexing

Signals

Differences

Signal handlers are userspace code, interrupts are not

Signal handlers may invoke system calls

Signal handlers are not dealt with in the same instant a signal
is risen

Multiple signals of the same type may be issued before the
first is dealt with

The behaviour for multiple issues of the same signal to the
same process is not defined

Since signal handling in Linux employs the realtime signal
architecture, only one signal is received

Introduction Signals Safe Multiplexing

Signals

Signal Handling

The actions to be performed upon receiving a signal are specified
in a sigaction structure :

struct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *,void *);

sigset_t sa_mask;

int sa_flags;

void (*sa_restorer)(void);

};

Introduction Signals Safe Multiplexing

Signals

Signal Handling

The signal handler function void (sa handler)(int)

Receives as the only parameter, the number of the signal

Does not return anything (as there is no one to return the
value to)

Can be interrupted as its running time is considered user code

Should be kept as small as possible to minimize interruptions

Introduction Signals Safe Multiplexing

Signals

Handler installation

A signal handler is installed via the sigaction primitive taking as
parameters :

The signal number signum

A sigaction struct act containing the new handler

A sigaction struct oldact where the old handler is saved

The SIG DFL macro specifies the default signal handler

The signal handler is installed until a new one is set

Introduction Signals Safe Multiplexing

Signals

Signal Masking

It is possible to block some signals from being delivered

A blocked signal will be delivered as soon as the block is
removeda

The set of signal to be temporarily blocked can be specified in
a sigset t structure

The sigemptyset function initializes an empty signal set,
while the sigfillset initializes a full signal set

The signaladdset and signaldelset respectively add and
remove a signal from the set

athis is different from the interrupt behaviour, which, if blocked, will be
ignored

Introduction Signals Safe Multiplexing

Signals

Signal Masking

Once a signal set has been built , it can be used either as a
block or unblock mask

The sigprocmask primitive adds/removes to/from the
blocked signal set of the process

The action is specified via the first parameter which can be
either SIG BLOCK, SIG UNBLOCK or SIG SET

The function saves the previous signal block mask for
convenience in restoring

Introduction Signals Safe Multiplexing

Signals

Signal Masking

Once a signal set has been built , it can be used either as a
block or unblock mask

The sigprocmask primitive adds/removes to/from the
blocked signal set of the process

The action is specified via the first parameter which can be
either SIG BLOCK, SIG UNBLOCK or SIG SET

The function saves the previous signal block mask for
convenience in restoring

Introduction Signals Safe Multiplexing

Signals

Peculiarities

Two signals cannot be blocked : KILL and STOP

Every child inherits a copy of its parent signal mask upon the
call of the fork primitive

The signal mask is also preserved across the execve primitive

If a signal is raised as a consequence of a hardware interrupt
(e.g. SIGSEGV or SIGFPE) the kernel will take drastic actions
even if the signal is masked

It is possible to meaningfully recover from a SIGSEGV through
keeping an alternate stack and restoring the correct program
flow in the SIGSEGV handler

Introduction Signals Safe Multiplexing

Uninterruptible multiplexing

the pselect primitive

A critical point where signal masking may be desired is when
a select function call is being run

Masking and unmasking by hand the call via sigprocmask

calls may not be as safe as desired

To this end , the POSIX standard specifies the pselect

primitive

The primitive acts atomically as a select call encapsulated in
two sigprocmask leaving the mask state in the same state it
was before the call

Introduction Signals Safe Multiplexing

Continuous running

Daemons

Running a process in background is commonly called
transforming it into a daemon

A daemon is a process which runs for an undefinite amount of
time (usually, until killed or the machine bursts in flames)

By default, the daemon only communicates via logfiles as no
terminal is expected to be running it

Usually, the working directory of a daemon is the root
directory (i.e. /)

For the sake of clarity, the daemon processes have a filename
ending in d (e.g. /usr/sbin/sshd)

Introduction Signals Safe Multiplexing

Continuous running

the daemon primitive

A convenient method to transform a process into a daemon is
the daemon primitive

This function accepts two integer parameters and performs
the following actions :

Forks the running process
Makes the parent program call an exit(), thus reparenting
the program to init

If the nochdir parameter is zero, changes the working
directory to /

If the noclose parameter is zero, closes standard input,
output and error descriptors

Introduction Signals Safe Multiplexing

Continuous running

Logging

Since the daemons run in background and have no associated
terminal, some way for them to communicate errors should be
devised

The most common way is to employ a log file

In order to ease the output on the log file, usually it replaces
either standard output or standard error (or both)

This can be accomplished via the dup2 primitive

int dup2(int oldfd, int newfd) duplicates oldfd into
newfd: passing either 1 or 2 as newfd effectively replaces
stdout and stderr

	Introduction
	Signals
	Safe Multiplexing

