Automi a stati finiti

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

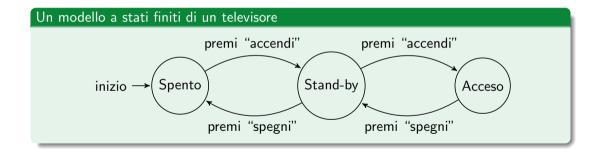
19 febbraio 2025

Modelli operativi

Un semplice modello di calcolo

- I modelli operativi di calcolo sono definiti come macchine astratte
- Modellano il calcolo come una serie di passi discreti da una condizione (stato) alla successiva
- Il primo (più semplice) che vediamo sono gli Automi a Stati Finiti (ASF, o Finite State Automata, FSA)
- Gli FSA hanno memoria del calcolo formata da un insieme finito di stati.
- Esempi: {marce di un'automobile},{fermo, passo, trotto, galoppo}, {in partenza, in viaggio, in arrivo}, $\{1, 2 \dots, k\}$

Modelli operativi



Formalizzazione

Costituenti di un FSA

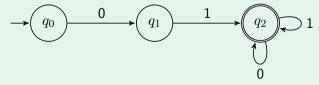
- Q, l'insieme finito dei suoi stati
- I, l'insieme finito (alfabeto) dei simboli in ingresso
- $\delta: \mathbf{Q} \times \mathbf{I} \to \mathbf{Q}$ la funzione di transizione: mappa una coppia (stato corrente, input) in uno stato di destinazione
- Serve definire un inizio della computazione: chiamiamo $q_0 \in \mathbf{Q}$ lo stato iniziale dell'automa ($q_0 = \text{Spento}$, nell'esempio precedente)
 - Si indica con una freccia entrante nello stato iniziale non originata da un altro stato

FSA Riconoscitore

Riconoscere un linguaggio con un FSA

- Possiamo usare un FSA per riconoscere le parole di un linguaggio
- ullet Definiamo l'insieme di stati finali $\mathbf{F} \subseteq \mathbf{Q}$
- ullet Se l'automa, leggendo una stringa, partendo da q_0 termina in uno stato finale, la stringa appartiene al linguaggio

Riconoscitore per $L = \{\text{stringhe che iniziano con 01}\}$



Formalizzazione dell'accettazione

Sequenza di mosse

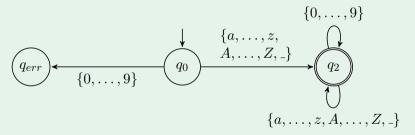
- Formalizziamo una sequenza di mosse definendo $\delta^*: \mathbf{Q} \times \mathbf{I}^* \to \mathbf{Q}$, estensione di δ induttivamente:
 - Base: $\forall q \in \mathbf{Q}, \ \delta^*(q, \varepsilon) = q$
 - Passo: $\delta^*(q,y.i) = \delta(\delta^*(q,y),i)$, con $i \in \mathbf{I}$ e $y \in \mathbf{I}^*$

Accettazione di un linguaggio

• Possiamo formalizzare l'accettazione di un linguaggio L su \mathbf{I} , da parte di un FSA $(\mathbf{Q}, \mathbf{I}, \delta, q_0, \mathbf{F})$ come

$$x \in L \Leftrightarrow \delta^*(q_0, x) \in \mathbf{F}$$

Riconoscitore degli identificatori del linguaggio C



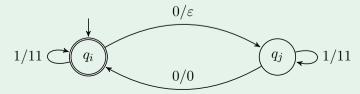
n.b. Arco etichettato con un insieme di n elementi \to abbreviazione per n archi, uno per ogni simbolo (si possono omettere le graffe se non ambiguo)

Traduttori

FSA traduttore

ullet Un FSA traduttore da L_1 a L_2 associa un simbolo letto e uno scritto a ogni transizione

 $L_1\subset\{0,1\}^*$ stringhe con numero di "0" pari, au : dimezza gli "0", raddoppia gli "1"



Formalizzazione di un traduttore

Elementi del traduttore

- Un FSA traduttore: 7-upla $\mathcal{A}: (\mathbf{Q}, \mathbf{I}, \delta, q_0, \mathbf{F}, \mathbf{O}, \eta)$
- $\langle \mathbf{Q}, \mathbf{I}, \delta, q_0, \mathbf{F} \rangle$ come nell'FSA riconoscitore
- O: alfabeto di uscita
- $\eta: \mathbf{Q} \times \mathbf{I} \to \mathbf{O}^*$ funzione di traduzione

Funzione di traduzione per stringhe η^*

- $\eta^*: \mathbf{Q} \times \mathbf{I}^* \to \mathbf{O}^*$ definita in maniera analoga
 - Base $\eta^*(q,\varepsilon) = \varepsilon$
 - Passo $\eta^*(q,y.i) = \eta^*(q,y).\eta(\delta^*(q,y),i)$, con $i \in \mathbf{I}, y \in \mathbf{I}^*$
- L'intero calcolo di traduzione è quindi formalizzato come

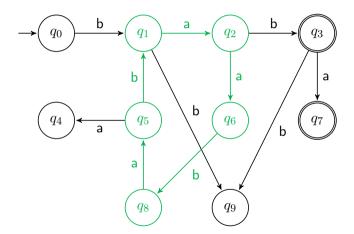
$$\tau(x) = \eta^*(q_0, x) \Leftrightarrow \delta^*(q_0, x) \in \mathbf{F}$$

Analisi del modello FSA

Alcune considerazioni

- Modello semplice, ma molto usato
 - E.g.: stati di esecuzione di un processo per il sistema operativo
- Questa semplicità ha un costo?
 - Lo quantificheremo più avanti (alcune calcoli non sono modellabili solo con un FSA)
- Una prima proprietà fondamentale: il comportamento ciclico degli FSA

Esempio di ciclo



Esiste un ciclo $\delta^*(q_1, aabab) = q_1$ percorribile $0, 1, 2, \ldots, n$ volte

Formalizzare il comportamento ciclico

Pumping lemma

- Premessa: $\exists x \in L$, L riconosciuto da un FSA, $|x| \geq |\mathbf{Q}|$
- Conseguenza: esistono $q\in {\bf Q}$, $w\in {\bf I}^+$ tali che x=ywz con $y,z\in {\bf I}^*$ e $\delta^*(q,w)=q$
 - ovvero esiste una sottostringa di x che viene riconosciuta dall'automa effettuando un'iterazione su un ciclo di stati
- Dal pumping lemma consegue che $yw^nz\in L, \forall n\geq 0$
 - Segue dal poter effettuare zero o più iterazioni del ciclo
- ullet Da cui "pumping lemma", posso "gonfiare" il numero di w

Conseguenze del Pumping lemma

Proprietà dei linguaggi riconosciuti da FSA

- Posso dire se $L=\varnothing$
 - $\exists x \in L \Rightarrow \exists y \in L, |y| < |\mathbf{Q}|$: se una parola ha "cicli in riconoscimento" li elimino \rightarrow posso dare in pasto le y all'FSA (sono finite) e verificare se almeno una $\in L$
- Posso dire se $|L| = \infty$
 - $\exists x \in L, |\mathbf{Q}| \leq |x| < 2|\mathbf{Q}|$ implica che x abbia un ciclo in riconoscimento
- N.B. aver un modo, in generale (con altri modelli di calcolo \neq FSA), di dire se $x \in L$ non implica saper rispondere queste due domande

Conseguenze pratiche del Pumping lemma

Proprietà "utili" di un linguaggio

- Mi interessa aver definito un linguaggio (di programmazione, di descrizione dati) consistente di nessuna parola?
- Mi interessa aver definito un linguaggio di programmazione in cui poter scrivere solo un numero finito di programmi?

Limitazioni degli FSA

Riconoscere strutture a parentesi

- $L = \{a^n b^n, n \ge 0\}$ è riconosciuto da un FSA?
- Intuizione: no. Dimostriamolo per assurdo
- sia $x \in L, x = a^m b^m, \frac{m}{2} > |Q|$, applicando il pumping lemma abbiamo che x = ywz, con w che avere una tra le seguenti forme
 - ullet $w=a^k$, pompando w ottengo $\forall r\in\mathbb{N}, a^{m-k}a^{r\cdot k}b^m\in L$, \mathcal{S}
 - ullet $w=b^k$, pompando w ottengo $orall r\in \mathbb{N}, a^mb^{r\cdot k}b^{m-k}\in L$, if
 - ullet $w=a^kb^h$, pompando w ottengo $\forall r\in\mathbb{N}, a^{m-k}(a^kb^h)^rb^{m-h}\in L$, if

Limitazioni degli FSA

Verso modelli più potenti

- ullet Intuitivamente: per "contare" un n arbitrariamente grande, occorre una quantità di memoria arbitrariamente grande
- Riconoscere strutture a parentesi (HTML,XML,linguaggi di programmazione) non è fattibile da un FSA
- Anche modellare un calcolatore fisico (che è un FSA) come tale può essere scomodo/intrattabile ($2^{2^{44}}$ stati)
- Sarà necessario "estendere" gli FSA per renderli più efficaci

Il concetto di chiusura

Chiusura (algebrica)

ullet Dati un insieme ${f S}$, ed un'operazione definita sui suoi elementi si dice che ${f S}$ è chiuso rispetto all'operazione, se il risultato di dell'applicarla ad un elemento di ${f S}$ è contenuto in ${f S}$

Esempi

- ullet I numeri naturali (insieme $\mathbb N$) sono chiusi rispetto alla somma, ma non rispetto alla sottrazione
- L'insieme dei convogli ferroviari è chiuso per concatenazione

Chiusura nei linguaggi

Chiusura di famiglie di linguaggi

- ullet Famiglia di linguaggi: un insieme $\mathbb L$ i cui elementi sono linguaggi, $\mathbf L=\{L_i\}$
- ullet L è chiusa rispetto a un'operazione (binaria) \star se $\forall L_1,L_2\in \mathbf{L}$ vale $L_1\star L_2\in \mathbf{L}$

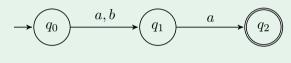
Linguaggi regolari

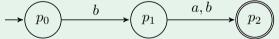
- \bullet La famiglia di linguaggi riconoscibili con un FSA è la famiglia dei linguaggi regolari, ${f R}$ o ${
 m REG}$
- R è chiusa rispetto a \cup , \cap , \neg , \setminus , alla concatenazione, a * e +

Intersezione tra linguaggi

Combinare gli FSA

Dati due FSA riconoscitori

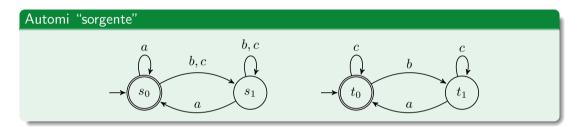


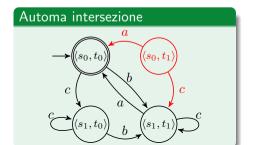


Ottengo il riconoscitore del linguaggio intersezione facendoli funzionare "insieme": è possibile una transizione solo se c'è in entrambi

$$\longrightarrow (\langle q_0, p_0 \rangle) \xrightarrow{b} (\langle q_1, p_1 \rangle) \xrightarrow{a} (\langle q_2, p_2 \rangle)$$

Intersezione: esempio





- Lo stato in rosso non è raggiungibile dallo stato iniziale → può essere eliminato
- Con la costruzione a punto fisso a partire da $\langle s_0,t_0 \rangle$ non viene neppure aggiunto

Formalizzazione descrittiva

Chiusura di famiglie di linguaggi

- Dati due automi $\mathcal{A}_1: (\mathbf{Q}_1, \mathbf{I}_1, \delta_1, q, \mathbf{F}_1)$, $\mathcal{A}_2: (\mathbf{Q}_2, \mathbf{I}_2, \delta_2, s, \mathbf{F}_2)$ l'automa intersezione $\mathcal{A}_{\cap} = \langle \mathcal{A}_1, \mathcal{A}_2 \rangle$ è dato da
 - Insieme degli stati $\mathbf{Q}_{\cap} = \mathbf{Q}_1 \times \mathbf{Q}_2$
 - Alfabeto $\mathbf{I}_{\cap} = \mathbf{I}_1 \cap \mathbf{I}_2$
 - Funzione di transizione $\delta_{\cap}(\langle q_1, q_2 \rangle, i) = \langle \delta_1(q_1, i), \delta_2(q_2, i) \rangle$
 - ullet Insieme degli stati finali ${f F}_\cap = {f F}_1 imes {f F}_2$

Correttezza del riconscitore: $L(A_{\cap}) = L(A_1) \cap L(A_2)$

• Si può dimostrare per induzione sulla lunghezza dell'input

Unione di linguaggi

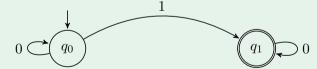
Due soluzioni

- Una prima soluzione è usare una costruzione analoga all'intersezione, ma che ottiene
 - ullet Insieme degli stati $\mathbf{Q}_{\cup} = (\mathbf{Q}_1 imes \mathbf{Q}_2) \cup \mathbf{Q}_1 \cup \mathbf{Q}_2$
 - Alfabeto $\mathbf{I}_{\cup} = \mathbf{I}_1 \cup \mathbf{I}_2$
 - $\bullet \ \, \delta_{\cup}(\langle q_1,q_2\rangle,i) = \begin{cases} \langle \delta_1(q_1,i),\delta_2(q_2,i)\rangle \text{ se esistono } \delta_1(q_1,i),\delta_2(q_2,i) \\ \delta_1(q_1,i) \text{ oppure } \delta_2(q_2,i) \text{ altrimenti.} \end{cases}$
 - ullet Insieme degli stati finali $\mathbf{F}_{\cup} = (\mathbf{F}_1 imes \mathbf{F}_2) \cup \mathbf{F}_1 \cup \mathbf{F}_2$
- La seconda soluzione è applicare la legge di De Morgan: $L_1 \cup L_2 = \neg(\neg L_1 \cap \neg L_2)$ ed usare intersezione e complemento

Complemento

Costruito operativamente

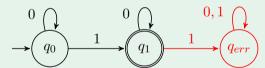
- ullet Idea generale: "rendere finali gli stati non finali e viceversa" $(\mathbf{F}_{compl} = \mathbf{Q} \setminus \mathbf{F})$
- È sufficiente scambiare i ruoli degli stati?



Complemento

Gestire δ parziali

• No. δ è una funzione parziale, negli FSA uno stato non accettante è "implicito" : lo stato di errore



- Aggiunto q_{exr} nell'FSA, "scambiare $\mathbf{F} \in \mathbf{Q} \setminus \mathbf{F}$ " funziona
- Problema non così facile da risolvere con altri modelli di calcolo
- In generale: calcolare la risposta negativa a un quesito non è equivalente a quella positiva.