Modelli e Linguaggi

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

18 febbraio 2025

Modelli

Progettazione basata su modelli

- La fase di progetto di un artefatto complesso si basa sull'uso di modelli
- Il modello consente di focalizzarsi sugli aspetti primari del problema e permette verifiche preliminari sul funzionamento

Come modellare?

- Modelli fisici: riproduzioni in scala (e.g., dighe in miniatura)
- Modelli teorici/formali: oggetti matematici che consentono una visione astratta del fenomeno modellato

Modelli formali

Uso dei modelli formali

- Formalizzazione del problema: ottenere una descrizione astratta dell'entità reale
- Risoluzione del problema formalizzato
- ullet Interpretazione dei risultati alla luce del modello, nel contesto dell'entità reale o (ri-)valutazione delle scelte di progetto

Quando un modello "funziona"?

- Un modello è *adeguato* se riflette correttamente il fenomeno modellato per gli aspetti che interessano
- Posso approssimare un cavallo a una sfera/punto materiale?
 - Per progettare una sella? Hmm... no.
 - Per calcolare quanto è robusto il pavimento della stalla? Non è così terribile

Modelli dell'informatica

Una "realtà" molto vicina al modello ...

- L'informatica è una delle discipline con maggior vicinanza tra il modello e la realtà di cui si occupa (il calcolo)
- Nella sua evoluzione i primi calcolatori sono stati la materializzazione diretta del modello di calcolo ("inversione" di tendenza: realtà ad immagine del modello)

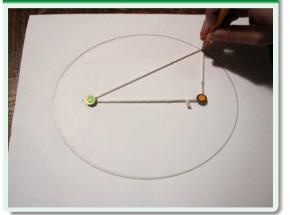
... e i relativi vantaggi

- I modelli formali sono di grande aiuto nella progettazione di HW e SW
 - Garanzie di correttezza, efficienza, robustezza, sicurezza
- Certificazione del livello di formalizzazione dell'artefatto HW/SW inclusa in standard (ISO/IEC 15408, livelli EAL)

Applicazioni dell'informatica

L'informatica a sostegno di altre discipline

- ullet L'informatica trova applicazioni in svariati contesti o un particolare calcolo effettuato $\dot{\rm e}$ il modello di qualcosa di reale
- Il successo è determinato dalla flessibilità del calcolo astratto come modello di una sequenza di ragionamenti logici
- Spesso la difficoltà sta proprio nel formulare il modello (= definire il problema)!
- Cosa significa dare un modello (quantitativo) a:
 - estrazione di "informazione" da grandi moli di dati
 - garantire la sicurezza di un sistema rispetto a incidenti/dolo
 - generare testo/immagini rassomiglianti ad esempi "naturali"
 - rispondere ad una domanda facendo una sintesi di contenuti


Alcune provocazioni

E. W. Dijkstra - premio Turing nel 1972

- [...] in our area, perhaps more than everywhere else, mathematical elegance is not a dispensable luxury but decides between success and failure.
- It is nice to know the dictionary definition for the adjective "elegant" in the meaning "simple and surprisingly effective".
- Programming is one of the most difficult branches of applied mathematics; the poorer mathematicians had better remain pure mathematicians.
- If you want more effective programmers, you will discover that they should not waste their time debugging, they should not introduce the bugs to start with.

Una classificazione dei modelli - Ellisse

Ellisse - Modello descrittivo

$$a, b, c, x, y \in \mathbb{R}$$

$$ax^2 + by^2 = c$$

Una classificazione dei modelli - Ordinamento

Modello operativo

Dato un insieme di n elementi disordinati,

- lacktriangledown ripeti n-1 volte
 - Trova l'elemento più piccolo tra quelli da ordinare
 - Aggiungilo in coda agli elementi ordinati
- aggiungi in coda l'ultimo elemento

Modello descrittivo

La permutazione della sequenza \boldsymbol{a} data t.c.

$$\forall i, a[i] \leq a[i+1]$$

Il linguaggio

Un (il?) primo modello

- Il linguaggio è da sempre uno strumento per esprimere modelli
- Esempi di linguaggio
 - Lingue naturali: italiano, inglese, francese, giapponese
 - Linguaggi sintetici: C, Java, XML, JSON
 - Linguaggi grafici: cartelli stradali, simboli di lavaggio capi
 - Linguaggi acustici: musica, fischi degli arbitri sportivi

Gli elementi del linguaggio

Alfabeto

- Un linguaggio è definito su un alfabeto
- L'alfabeto è un insieme finito di simboli
- Esempi:
 - $\{a, b, c, \dots, z\}$
 - {0,1}
 - Codice Morse, Codice Baudot, Codice ASCII
 - {J, J, J, ...}
 - {\$\int_{\alpha}, \begin{aligned} \begin{alig

Gli elementi del linguaggio

Stringa su un alfabeto A

- Stringa: sequenza ordinata e finita di elementi dell'alfabeto
- Esempio: a, stringa, vicesindaco, klatubaradanikto
- ullet Lunghezza di una stringa o numero di elmenti: $|a|=1,\;|stringa|=7$
- Stringa nulla ε , $|\varepsilon| = 0$
- ullet A^* insieme di tutte le stringhe (inclusa arepsilon) su A
 - \bullet Esempio: $A = \{0,1\}, A^* = \{\varepsilon,0,1,00,01,10,11,100,101,\ldots\}$

Operazioni tra stringhe

Concatenazione

- L'operatore di concatenazione è il . (può essere omesso)
 - ullet Con x=Bana, y=na, z=ch, si ha x.y=Banana, x.z=Banach
- L'operazione di concatenazione è binaria, associativa, non commutativa

Monoide libero

- Dato un alfabeto A, $(A^*, .)$ è il monoide libero costruito su A
 - ullet L'elemento neutro del monoide è la stringa nulla arepsilon

Linguaggio

Linguaggio su un alfabeto A

- ullet Un linguaggio L su un alfabeto A è un sottoinsieme di A^*
 - ullet ... ovvero un insieme di sequenze di simboli di A (parole)
- Esempi:
 - 1'italiano è un linguaggio su $A = \{a, b, c, \dots, z, \bot\}$
 - ② i files PDF sono un linguaggio su $A=\{0,1\}$
 - \bullet i numeri pari in base 4 sono un linguaggio su $A = \{0, 1, 2, 3\}$
 - il DNA è un linguaggio codificabile su $A = \{C, G, A, T\}$
- n.b. anche se $|A| < \infty$, non necessariamente $|L| < \infty$ (vedi esempio 3)
- A seconda dell'alfabeto scelto, un linguaggio può modellare moltissime cose (è, in un certo senso, *universale*)

Operazioni tra linguaggi

Operazioni insiemistiche

- I linguaggi sono insiemi, valgono \cup (unione), \cap (inters.), \setminus (differenza)
- Il complemento $\neg L = \bar{L}$ è definito rispetto ad A^* , ovvero $\neg L = A^* \setminus L$

Concatenazione tra linguaggi

• Dati L_1 su A_1 , L_2 su A_2 , $L_1.L_2$, definito su $A_1 \cup A_2$ è:

$$L_1.L_2 = \{x.y \mid x \in L_1, y \in L_2\}$$

• Es.: Dati $L_1=\{0,1\}^*, L_2=\{a,b\}^*$ abbiamo $L_1.L_2=\{\varepsilon,0,1,0a,011b,0aba,\ldots\}$. Nota bene: $a1\notin L_1.L_2$

Operazioni tra linguaggi

Alcune proprietà

- $L^n, n \in \mathbb{N}$, la concatenazione di L con sè stesso n volte
 - Definizione compatta: $L^0 = \{\varepsilon\}, L^n = L^{n-1}.L$
- N.b.: il linguaggio vuoto $L_1 = \emptyset \neq \{\varepsilon\} = L_2$ il linguaggio fatto dalla sola stringa vuota.
 - effetti collaterali includono $\{\varepsilon\}.L = L \neq L.\varnothing = \varnothing$

Operatore +

- L'operatore + indica stringhe fatte concatenando *uno* o più elementi dell'insieme.
 - $A = \{0, 1\}, A^+ = \{0, 1, 00, 01, 10, \ldots\}$
- Per estensione: $L^* = \bigcup_{n=0}^{\infty} L^n$, $L^+ = \bigcup_{n=1}^{\infty} L^n$

Operazioni tra linguaggi

Nella pratica

- È possibile definire un formato di file come linguaggio (e.g., una pagina HTML)
- L'intersezione tra linguaggi ci indica se due formati sono "compatibili"
 - Se L_1 sono i documenti HTML 4 e L_2 quelli HTML 5, $L_1 \cap L_2$ sono i documenti corretti secondo entrambi gli standard
- La concatenazione di linguaggi consente di descrivere più agevolmente formati complessi
 - ullet Formato di un pacchetto di dati su rete $L_{\mathsf{header}}.L_{\mathsf{dati}}.L_{\mathsf{trailer}}$
 - ullet Archivio di dati tar o zip: $L_{\mathsf{indice}}.L^n_{\mathsf{file}}$

Usi del linguaggio

Il linguaggio come formalismo espressivo

- Un linguaggio può essere usato per esprimere un problema:
 - "Trovare la miglior mossa successiva in una partita a scacchi"
 - "Trovare tre numeri interi positivi tali per cui $x^3+y^3=z^3$ "
- L'insieme delle soluzioni di un problema è un linguaggio:
 - Risolvere il problema \rightarrow calcolare (riconoscere) un $x \in L$
 - Es: "Questo programma C è sintatticamente corretto?"
 - Data x dire se $x \in L_{\text{linguaggio C}}$
 - "Questa immagine digitale contiene un volto?"
 - "Questo brano digitalizzato è in quattro quarti?"
 - "Questa funzione è la derivata di $x^3 + x$?"

Da un linguaggio all'altro

Traduzioni

- Tradurre = mettere in corrispondenza parole di due linguaggi
- ullet Formalmente, una traduzione è una mappa $au(\cdot):L_1 o L_2$
 - $L_1=\{a,b\}^*, L_2=\{c,d\}^*$, se au mappa $a\mapsto c$, $b\mapsto d$, allora au(ba)=dc
 - $L_1=\{0,1\}^*, L_2=\{0,1\}^*$, se au scambia 1 con 0, allora au(010)=101

Esempi pratici

- L'insieme delle soluzioni di un problema è un linguaggio:
 - Compressione/cambio di formato di un file
 - Compilazione di un programma in codice oggetto
 - Correzione ortografica/sintattica meccanizzato

Conclusione

Linguaggi come metodo espressivo

- Il linguaggio costituisce un mezzo per descrivere la natura di un problema e quella delle sue soluzioni
- Useremo la formalizzazione del linguaggio come elemento fondamentale per formalizzare il concetto di calcolo
- Il passaggio alla pratica è "più diretto di quanto sembri", dopotutto il calcolatore maneggia stringhe su un alfabeto binario...