
Fault Attack to the Elliptic Curve Digital Signature
Algorithm with Multiple Bit Faults

Alessandro Barenghi
DEI - Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5,
20133 Milano, Italy

barenghi@elet.polimi.it

Guido M. Bertoni
STMicroelectronics

Via Olivetti 2,
20041 Agrate Brianza

(MB), Italy
guido.bertoni@st.com

Luca Breveglieri
DEI - Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5,
20133 Milano, Italy

brevegli@elet.polimi.it

Andrea Palomba
DEI - Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5,
20133 Milano, Italy

palomba@elet.polimi.it

Gerardo Pelosi
DEI - Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5,
20133 Milano, Italy

pelosi@elet.polimi.it

ABSTRACT
Elliptic curve cryptosystems proved to be well suited for
securing systems with constrained resources like embedded
and portable devices. In a fault attack, errors are induced
during the computation of a cryptographic primitive, and
the faulty results are collected to derive information about
the secret key stored into the device in a non-readable way.
Scenarios where the secure devices are seized by an oppo-
nent are quite common. Consequently, it is possible for an
attacker to induce changes in the working environment of
the device to cause alterations in the computation of the
cryptographic primitive. We introduce a new fault model
and attack methodology to recover the secret key employed
in implementations of the Elliptic Curve Digital Signature
Algorithm. Our attack exploits the information leakage in-
duced through altering the execution of the modular arith-
metic operations used in the signature primitive and does
not rely on the properties of the underlying elliptic curve
mathematical structure. The attack is easily reproducible
with low cost fault injection technologies relying on tran-
sient errors placed within a single datapath width of the
target architecture.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]:
Microprocessor/microcomputer applications;
C.5.3[Computer System Implementation]:
Microcomputers[portable devices];
E.3[Data Encryption]: Standards (ECDSA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
for consideration of SIN’11, Nov. 14–19, 2011, Sydney, Australia.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Security

Keywords
Fault Attacks, Elliptic Curve Digital Signature Algorithm

1. INTRODUCTION
In the last few years there has been a rapidly growing

interest for digital signature frameworks from both public
institutions and private enterprises to facilitate the adop-
tion of large-scale IT applications. Digital signature schemes
guarantee the detection of forgery or tampering of trans-
mitted data through providing data integrity, data origin
authentication, and non-repudiation assurances of previous
actions or commitments. Indeed, digital signature schemes
represent an essential building block of many cryptographic
protocols that provide other services including entity au-
thentication, and authenticated key agreement. Currently,
the most innovative and widely used scheme for digital sig-
natures is the Elliptic Curve Digital Signature Algorithm
(ECDSA) [1,17]. The same standards certify also the ECDSA
key sizes advised by NSA, in its public cryptographic suite,
for secret and top secret grade security documents. The
basis for the security of ECDSA is the intractability of the
elliptic curve discrete logarithm problem (ECDLP), which
appears to be harder than both the discrete logarithm prob-
lem in finite fields and the problem of factoring a composite
integer. Assuming a predetermined security level, the pa-
rameters and operands involved in the ECDSA algorithm
are smaller than the ones employed in other systems, with
the important consequence of obtaining resource-saving and
low-power consumption implementations while keeping high
security margins. Most signature-creation and signature-
verification systems are currently based on embedded and
portable devices, which keep all necessary private informa-
tion (f.i., keys and certificates) in a non-volatile storage ei-
ther to prove their authenticity to other integrated systems
or to accept only firmware/software updates from valid is-
suers. Usually, implementation attacks aim either at com-

promising or recovering the private information manipulated
through the cryptographic primitive in secure devices. In
principle, the only option of the potential attackers to guess
the secret key value should be an exhaustive search of the
full key space, without any information leakage through ob-
serving or manipulating the inputs/outputs of the device.

1.1 Fault induction techniques
Semi-invasive fault attacks may find a way around physi-

cal hardening techniques employed on tamper resistant de-
vices since it is possible to apply some techniques even with-
out tampering with the physical barriers built around the
device. Common techniques to induce controlled faults in-
clude: supplying noisy power or clock signals, providing an
insufficient feeding voltage during the execution, irradiat-
ing the device with either coherent light or X-rays. Al-
terations in external clock and supply voltage glitches are
known to cause either incorrect data loading from memory
or instruction skips [19], while the constant underfeeding
may induce temporary stuck-at faults due to setup time vi-
olations [3,4,21]. Selective irradiation of sensitive area of the
circuit, such as the registers or the arithmetic-logical units,
induces either single local bit flips or multiple bit flips in
a contiguous part of a value [23]. Depending on the preci-
sion of the fault induction technique, it is possible for an
attacker to induce more or less controlled faults in a com-
puting device (in timing and/or location). The most precise
fault induction techniques allow the insertion of single bit
faults aimed at a specific operation of the algorithm, thus
allowing the attacker to alter its behavior in a fully con-
trolled way. Coarser fault induction techniques may result
in the corruption of a single byte or in the modification of
the full value held by one register during the execution. The
security margin effectively provided by a cryptographic to-
ken depends on both the physical means available to the
attacker and the structure and implementation of the cryp-
tographic algorithm. In particular the implementation and
structure play a crucial role in determining the model of the
faults which must be employed to obtain exploitable output
values from the device.

1.2 Contributions
In this work we will present an extension of the single bit

fault attack to ECDSA proposed in [5] aimed at recovering
the secret key through inducing faults in the signature gen-
eration primitive. The extension concerns the introduction
of multiple single bit faults placed within a single datapath
width of the target architecture. This extension effectively
lowers the security margin of the algorithm since the pre-
cise induction of single bit faults usually requires expensive
equipment such as Focused Ion Beam stations. In particu-
lar, it is possible to significantly broaden the fault induction
methodologies to obtain a word-sized fault in a computing
device: even the cheapest techniques induce faults fitting
this model. However, a less precise fault model implies that
the information leaked from the erroneous results will be less
precise, thus leading to an increased computational effort to
exploit it. We provide a complexity analysis detailing the
running time of the secret key retrieval algorithm and the
average number of faults required to retrieve the secret key.
Our attack relies on the fact that multiple precision multipli-
cations are implemented in an operand scanning fashion [15]
in the underlying architecture. This can be achieved either
in software, where the word length of the operand scanning
algorithm is determined by the architecture, or in a dedi-

cated ASIC implementation, where the datapath width rep-
resents a design parameter. A notable example is the latest
OpenSSL implementation1, conforming to ANSI X9.62 [1],
which employs the aforementioned multiplication strategy
and is available for a large variety of CPU architectures cov-
ering the full spectrum of current computing devices. The
most common hardware implementation for high speed mul-
tiple precision multipliers, the“Coarsely Integrated Operand
Scanning” [24], also relies on the same operative methodol-
ogy. We consider architecture datapath widths ranging from
8 to 32 bits to cover the full range of current implementations
of ECDSA for embedded and mobile platforms. The attack
workflow relies on collecting the erroneous results produced
by the device and recognizing whether they are effectively
exploitable to retrieve a word of the secret key, or if they are
to be discarded immediately.

1.3 Organization of the paper
The remainder of the paper is organized as follows. Sec-

tion 2 resumes the mathematical background on elliptic curve
cryptography and the ECDSA algorithm. Section 3 intro-
duces the fault model assumed by the proposed attack. Sec-
tion 4 describes the secret-key retrieval algorithm designed
to operate on the faulty outputs of the ECDSA signature
generation primitive. Section 5 presents the performance
results. Section 6 describes related work through surveying
the main results on fault attacks aimed at Elliptic Curve
Cryptosystems (ECC) and the attacks at the current state-
of-the-art that specifically target the ECDSA primitive. Fi-
nally, Section 7 draws our conclusions.

2. PRELIMINARIES

2.1 Elliptic curves
Let Fp denote the finite field built over the equivalence

classes generated by integers Z modulo p, where p is a prime
number. Assuming p/∈{2, 3} we denote as E(Fp) the elliptic
curve represented by the set of points P(xP, yP)∈E,xP, yP∈Fp

satisfying equation (1), plus the point at infinity O that rep-
resents the directions parallel to the y-axis in the projective
plane.

y2 = x3 + a x+ b, 4a3 + 27b2 ̸= 0, a, b ∈ Fp (1)

Let P, Q be two points of E(Fp), and let R∈E(Fp) be the
third point of intersection of E with the straight line joining
P and Q (or with the tangent line at P if P=Q). The point S
derived as the third point of intersection between E and the
vertical line joining R and O is defined to be the outcome of
a commutative internal composition law (a.k.a. “secant-&-
tangent rule”) between P,Q and denoted as S=P+Q. The
set of points of an elliptic curve with the previous inter-
nal composition law constitutes an algebraic commutative
group (E(Fp), +) [25] where O is the neutral element (i.e.,
P+O=P ∀P∈E(Fp)). Given an integer k∈Zn (the set of
canonical representatives of residue classes modulo n) and a
point P∈E(Fp), the “scalar-point multiplication” operation
is defined as the iterated sum: P+. . .+P=[k]P, with [k]P=O
if k=0. In the following we will denote as G the generator
of the group (E(Fp), +), and as n=|⟨G⟩|=|E((Fp), +)| the
order of the group. The result of the following lemma will

1Mark J. Cox et al., The OpenSSL Project, ver.1.0.0d.
http://www.openssl.org/

be employed to design the attack methodology described in
the next sections.

Lemma 1. Let P(xP, yP) be a point of the elliptic curve
E(Fp), and r=xP mod n. There are at most three other
points belonging to the curve E(Fp) having an x-coordinate
in the same equivalence class modulo n of r.

Proof. Hasse’s theorem [25] is a well known result in el-
liptic curve theory that bounds the number of points on a
curve, n=|E(Fp)|: p+1−2

√
p ≤n≤ p+1+2

√
p. Making use

of simple algebraic equivalences, it is easy to see how the
previous relation implies n+1−2

√
n ≤ p ≤ n+1+2

√
n, and

then also p<2n. Therefore, given a generic point Q(xQ, yQ),
Q̸=P, xQ, yQ∈Fp, the relation r=xQ modn ⇔ r=xQ−λn
with λ∈N, may be valid only when λ∈{0, 1}. Considering
that a generic point Q and its opposite, −Q, have the same
x-coordinate, we are able to infer that there are at most
three points on E(Fp), other than P, with an x-coordinate
in the same equivalence class modulo n of r. Given a value r,
the candidate points can be obtained via replacing r+λn,
λ∈{0, 1} as the x-coordinate value at the second member
of equation (1), and checking whether such a value is a
quadratic residue modulo p. In case a valid coordinate pair,
Q=(xQ, yQ), xQ=r+λn, is found, the computation of the
opposite −Q allows to collect either two different points
(whereas, Q ̸=−Q) or one point with double multiplicity.

2.2 Digital Signature
Standards on ECDSA [1, 12, 17] provide a list of recom-

mended elliptic curves E(Fp), each of which has a specified
prime finite field Fp, group generator G and group order
n=|⟨G⟩|. The ECDSA specification defines three algorithms
for the key generation, the signature generation and the sig-
nature verification, respectively.
The key generation algorithm selects a cryptographically

strong random integer d∈Zn\{0} as private key, and a cor-
responding public key (E(Fp), G, n, Y) where Y= [d]G.

Algorithm 2.1: ECDSA Signature Generation

Globals: ⟨G⟩=(E(Fp),+), n=|⟨G ⟩|, H: hash function
Input: message, m; secret key, d∈Zn\{0}
Output: signature token, (r, s) with r, s∈Zn\{0}

1 begin
2 repeat

3 e�H(m), k
Rand← {1, . . . , n−1} /* e, k∈Zn */

4 r�x-coord([k]G) mod n

5 s�(e+ r d) k−1 mod n
6 until r=0 or s=0
7 return (r, s)

The signature generation algorithm (see Algorithm 2.1)
takes as input the private key, a message m, and produces
a signature token (r, s), with r, s∈Zn\{0}. The algorithm
first obtains a hashed version e of m and a cryptographically
strong random number k∈Zn\{0} that must be different in
every run of the primitive. Subsequently, the scalar-point
multiplication [k]G is performed and the x-coordinate of the
resulting point is reduced modulo the order of the curve n to
obtain the first part of the signature token, r (line 4). The
second part of the signature token, s, is computed through
combining together the hash of the message e, the value r
and the extracted random number k through computing one
modular inversion, one modular addition, and two modular

multiplications (line 5). In case either r=0 or s=0 the proce-
dure is re-run with a different k until an admissible signature
is obtained.

The verification algorithm takes as input the message m,
the signature token (r, s) and the public key (E(Fp), G, n, Y),
Y=[d]G. The procedure first verifies that r, s∈Zn\{0}, then
computes u1�H(m) s−1 modn, u2�r s−1 modn, and
v�x-coord([u1]G +[u2]Y)modn to return a positive vali-
dation of the signature token if and only if v=r.

2.3 Discrete Logarithm Problem
The mathematical security of the ECDSA signature gen-

eration algorithm is based on the hardness of the underlying
ECDLP. The complexity of the logarithm problem largely
depends on the considered algebraic group structure. In-
deed, the best method to solve the DLP in the multiplica-
tive group of a finite field, F∗

p, is the“index calculus”method.
This technique finds a relatively small factor base to express
most of the group elements as products of elements in the
factor base. The group of points on an elliptic curve E(Fp)
does not have the same “smoothness” of F∗

p thus, the factor
base strategy cannot be applied. As a security measure, all
the standardized curves were defined taking care of having
a prime group order n. The best algorithms to solve the dis-
crete logarithm problem in a generic finite cyclic group with
prime order, like (E(Fp), +), are the Baby-Step/Giant-Step
(BSGS) method [22] and the Pollard’s rho method [18].

Informally, the Pollard’s rho algorithm involves guessing
a random sequence of powers of the logarithm base, until
two of them give the same value, while the BSGS method
pre-computes an ordered list of powers and compares the
value of another ordered sequence of powers against the for-
mer list to find a match. The spatial complexity of the
BSGS method (O(

√
n)) makes this technique inconvenient

when compared with the Pollard’s rho algorithm, assuming
no further information regarding the expected value of the
logarithm is available.

In the next sections we will employ a DLP extraction
routine to find a logarithm value which ranges in a pre-
determined interval. We note that, this a-priori knowledge
about the range limits of the discrete logarithm is of no
use with the Pollard’s rho method (since its random walk
among the powers of the logarithm base B is uniformly
spread over the entire set of group elements), while the ta-
ble lookup scheme of a BSGS strategy can be easily tailored
to sweep a bounded range of values. Assuming to solve
the DLP Q=[δ]B, 0≤δ≤M , where Q, B∈E(Fp), 0<M≪

√
n,

n=|(E(Fp),+)|, the optimized BSGS strategy considers

δ=a⌈
√
M⌉+b, 0≤a, b≤⌈

√
M⌉ and formulates the problem

as:

Q− [b] B︸ ︷︷ ︸
Baby−Step

= [a]
([
⌈
√
M⌉

]
B
)︸ ︷︷ ︸

Giant−Step

(2)

A list of Baby-Steps is first computed and stored to be
searched through a hash-based lookup strategy. Subsequently,
the Giant-Steps are sequentially computed for each value
a∈{0, . . . , ⌈

√
M⌉} and checked against the table of Baby-

Steps values. If a match occurs then the logarithm does
exist and the values of a, b, and δ are easily recovered with
an overall cost bounded by O(

√
M) group operations.

2.4 Modular Arithmetic
In an elliptic curve cryptosystem the modular multiplica-

tion operations among the values of the point coordinates

Algorithm 2.2: Operand Scanning Multiplication

Input: a=(at−1, . . . , a0)2w , b=(bt−1, . . . , b0)2w
Output: c=a b=(c2t−1, . . . , c0)2w

1 begin
2 (c2t−1, . . . , c0)2w � (0, . . . , 0)2w
3 for j � 0 to t−1 do
4 carry � 0
5 for i � 0 to t−1 do
6 (hi, lo)2w � ai × bj
7 lo � lo+ carry
8 hi � hi+ (lo < carry)
9 lo � lo+ ci+j

10 hi � hi+ (lo < ci+j)
11 ci+j � lo
12 carry � hi

13 cj+t � carry

14 return c

account for the majority of the total execution time. There-
fore, the performances of any implementation of this scheme
heavily depend on the underlying speed of the finite field
arithmetic operations. To achieve an efficient modular mul-
tiplication, the ECDSA standards [17] specify a prime num-
ber for the generation of the finite field of a set of recom-
mended curves (e.g., P−192). The primes are chosen with a
specific form so that it is possible to execute a fast reduction
procedure, i.e., p=pt−1(2

w)t−1±, . . . ,± p0(2
w)0, pi∈{0, 1},

0≤i≤t−1, where t is the number of w-bit processor’s words
composing the multiprecision integer, p. Indeed, the reduc-
tion operation is implemented as a few single precision addi-
tions among the words of the input operand. After perform-
ing the scalar-point multiplication (line 4 in Algorithm 2.1),
the ECDSA signature primitive performs all the subsequent
computations modulo the order of the curve n, which is a
generic prime without any particular form. However, there
are only a small number of operations to be performed mod-
ulo n, namely two multiplications, one addition and one in-
version (line 5, Algorithm 2.1). The field inversion is per-
formed via Euclid’s extended algorithm, thus avoiding the
need to employ Montgomery’s representation to compute it
via exponentiation. This, in turn, results in the modular
multiplications being done via a common multiple precision
multiplication followed by a reduction made via trivial divi-
sion algorithm. The operand scanning method reported in
Algorithm 2.2 is the common multiprecision-multiplication
strategy employed in the most adopted software libraries2.
The algorithm outputs the product from the least significant
word to the most significant word, one at each outer iteration
via summing the outcomes of equal order single-precision
products, (hi, lo)2w (see line 6) and properly propagating
the single-precision carry values.

3. FAULT MODEL
A fault induction technique not spatially precise enough

to limit the impact of the alteration in the computation will
most likely cause a multiple bit flip in one of the intermediate
values. This kind of hazard in a computation is commonly
attainable through a number of technical means, for instance
the ones described [3,19].
We consider the effects of faults injected into the ECDSA

signature generation primitive (see Algorithm 2.1) targeting

2In the following sections, for the sake of clarity, we will
denote a single-precision multiplication between factors with
w-bit size as ×, as reported at line 6 of Algorithm 2.2

the multiprecision modular multiplication executed during
the computation of the second part, s, of the signature token
(see line 5 in Algorithm 2.1).

The considered faults are modeled as a random change in
one of the two single precision operands employed during
the execution of the operand scanning multiplication strat-
egy, within a single iteration of the nested-loop structure.
The faulted multiplication outcome and the relative mul-
tiplication error exploited in our attack are more formally
stated as follows.

Definition 1 (Faulted Multiplication). Let a, b be
two multiprecision integers composed by t processor words
with w-bit size: a=(at−1, . . . , a0)2w , b=(bt−1, . . . , b0)2w , and
c=a b=(c2t−1, . . . , c0)2w be the result of a multiprecision mul-
tiplication computed following Algorithm 2.2.

A faulted multiplication is defined as the value computed
through Algorithm 2.2 when a change is induced in one word
of an input factor during a single iteration (i, j) of the loop
nest, with i, j∈{0, . . . , t−1}, just before the execution of the
single-precision multiplication operation (line 6 in Algorithm
2.2).

The knowledge of the loop indices of the nested-loop struc-
ture where the fault is injected enables the attacker to de-
duce a precise characterization of the multiplication error.

Definition 2 (Multiplication Error). Let a, b be
two multiprecision integers composed by t processor words
with w-bit size: a=(at−1, . . . , a0)2w , b=(bt−1, . . . , b0)2w , and
c=a b=(c2t−1, . . . , c0)2w be the result of a multiprecision mul-
tiplication computed following Algorithm 2.2.

A multiplication error is defined as the integer value given
by the difference between the faulty (c̃) and faulty-free (c)
multiprecision multiplication outcomes:

c̃ = c± MulError

If the multiprecision multiplication algorithm is faulted dur-
ing the specific (i,j) loop nest iteration, with i, j∈{0,. . . ,t−1},
the multiplication error is expressed as

MulError=

{
(emf×ai) (2

w)i+j , when bj is altered

(emf×bj) (2
w)i+j , when ai is altered

where emf∈{1,. . . ,2w−1} is a random multiplication factor.

In our attack scenario the ECDSA signature generation
routine is considered. In particular, we will refer to the mul-
tiprecision multiplication employed to compose the second
part of the signature (line 5 in Algorithm 2.1) combining
r=(rt−1, . . . , r0)2w with the secret key d=(dt−1, . . . , d0)2w .

The faulty signature obtained, when the operation r d is
affected by an hazard on an operand of a specific single pre-
cision multiplication, can be expressed as the pair (r, s̃),
where s̃ = s± MulError k−1 mod n; in particular:

s̃=s±
(
(emf×di) (2

w)i+j) k−1 modn, i, j∈{0,. . .,t−1} (3)

s̃=s±
(
(emf×ri) (2

w)i+j) k−1 modn, i, j∈{0,. . .,t−1} (4)

depending on whether the fault damaged either r, (3) or
d, (4). The faults exploitable for the secret key retrieval
process, are only the ones described by equation (3). In the
next section we will see how to distinguish them from the
ones described by equation (4), via observing that the whole
value of r is known to the attacker, since it is a part of the
signature.

We note that in case any word among di and ri in the
former equations is equal to zero, the output of the signature
generation routine will be correct instead of erroneous, i.e.
s̃=s. However, none of the two possibilities pose an issue to
the recovery of the whole key. On one hand, the fact that
the value of r changes at each signature generation avoids
the possibility of having an ri taking always a zero value.
On the other hand, the possible zero values taken by some
words, di, of the secret key can be dealt with via initializing
the guessed secret key words to zero and checking at the
retrieval of each word of the secret key whether the value of
the whole key d generates a valid public key.

4. ATTACK DESCRIPTION
The attack is formulated with an on-line strategy which

extracts information about one word di of the secret key
d=(dt−1,. . . ,d0)2w at a time, and repeatedly collects faults
until the whole value is revealed. However, the actual phys-
ical collection of the faulty signatures may be easily decou-
pled from the key retrieval procedure, thus reducing the time
during which the opponent needs to seize the secure device.
For the sake of clarity, the attack will be described as col-
lecting faulty signatures from the same message. Since this
hypothesis is not used in the attack, it is possible to em-
ploy signatures coming from different messages without any
penalty. Moreover, the key recovery procedure does not rely
on knowing the value of a correct signature of the message
m. This is particularly appropriate, since the ECDSA sig-
nature generation algorithm mandates the use of a random
nonce k for every run of the signature routine, thus effec-
tively yielding a different signature every time.

4.1 Secret Key Retrieval Algorithm
Algorithm 4.1 acts by recovering secret key related infor-

mation through injecting faults during a specific iteration
of the loop nest of the multiprecision multiplication, r d,
involved in the signature generation process (see line 5 of
Algorithm 2.1).
Information related to one word of the secret key is then

extracted from the analysis of any faulty result. Through
collecting a number of faults related to each word, it is
eventually possible to reveal the whole value d. The end
is reached when the guessed d correctly yields the known
associated public key, i.e., when [d]G=Y. Through injecting
a fault during a single-precision multiplication within the
nested-loop iteration (i, j) with i=j=ind, ind∈{0, . . . ,t−1},
it is possible to obtain a faulty result, δ, carrying information
about either the word dind or rind, depending on the position
of the fault, as explained in Section 3. A subsequent check
on it will distinguish the two cases and keep the value δ only
when it is recognized as a damage on the rind factor, in such
a way to exploit equation (3) and, subsequently, derive the
key word dind. Assuming that a change of value in the word
rind has been caused, a careful rewriting of equation (3) al-
lows a “reduced”ECDLP to be formulated. Indeed, starting
from the following equation(

(emf×dind) (2
w)2ind

)
s̃−1 = ±(k − es̃−1 − rds̃−1) mod n

and considering both members as coefficients in a scalar-
point multiplication by the curve generator G, we obtain:

[emf× dind]︸ ︷︷ ︸
discrete log δ

[(2w)2ind s̃−1] G︸ ︷︷ ︸
base point B

= ±(P̂− [es̃−1]G− [rs̃−1]Y)︸ ︷︷ ︸
discrete log argument pointQ

Algorithm 4.1: Secret-Key Retrieval

Globals: n: order of the group, n=⟨G⟩=| (E(Fp), +) |;
w: processor word size; t: number of words to represent Zn

elements, t=
⌈
⌈lg2 n⌉

w

⌉
Input: public key, Y=[d]G∈E(Fp)
Output: value of the private key, d∈Zn

d=(dt−1, . . . , d0)2w , 0≤dind≤2w−1, 0≤ind≤t−1
1 begin
2 d=(dt−1, . . . , d0)2w � (0, . . . , 0)2w

3 m
Rand← {0, 1}∗; e � H(m)/* e ∈ Zn */

4 ind �0
5 while [d]G̸=Y do
6 (r, s̃) � Faulted Sign(m, ind)

7 foreach P̂∈
{
(x, y)∈⟨G ⟩ : xmodn=r

}
do

8 Q � P̂−[e s̃−1]G−[r s̃−1]Y

9 B � [(2w)2·inds̃−1]G
10 δ � OptimizedBSGS(B,Q) /* δ=emf×dind */
11 if δ ̸= ⊥ and rind ∤ δ then
12 dind � gcd(dind, δ)
13 break
14 ind �(ind+1) mod t
15 return d

where P̂ is one of the possible curve points having the same
x-coordinate of the unknown point [k]G (see line 4 in Algo-
rithm 2.1), as described by Lemma 1.

The reduced ECDLPs formulated above (one for each
value of the right-hand side of the relation) can be efficiently
solved, employing a BSGS strategy, thanks to the observa-
tion that the discrete logarithm value δ is an integer in the
range {0, . . . ,M−1}, with M=22w, since M−1 is the max-
imum value that a single-precision multiplication may yield
(see Section 2). An optimized implementation of the BSGS
method can try to solve the two ECDLP instances (depend-
ing on the sign of Q) through coupling them together. Start-
ing from the basic description of the BSGS in Section 2.3,
we can rewrite equation (2) as: [b] B=Q−[a] ([

√
M

]
B), with

a,b∈{0,. . . ,
√
M}. This form of the equation is amenable to

be computed faster since, it is possible to match each Baby-
Step value with the Giant-Step values corresponding to both
Q−[a] ([

√
M

]
B) and −Q−[a] ([

√
M

]
B), at the cost of only

one additional elliptic curve point operation. After obtain-
ing a discrete logarithm δ, the computation of dind is carried
out through a sequence of gcd operations among the set of
values of the form δ=emf×dind, with emf being a random
w-bit value.

The secret key recovery procedure is detailed in Algo-
rithm 4.1, which takes as input the public key Y and the
public parameters of the employed elliptic curve, and out-
puts the value of the secret key d. As a first initialization
step, the algorithm sets the value of all the words dt−1,. . . ,d0
of the key hypothesis d to zero (line 2). Subsequently, it
draws a random message m from the acceptable message
space and computes its hash e (line 3). The algorithm will
recover every word of the secret key through injecting a fault
in the single-precision multiplication between two words in-
dexed by the same value, ind, which will take all the values
from 0 to t−1 (line 4). While the value of the key hypothesis
is not correct (line 5) the Algorithm gathers new informa-
tion about the secret key via obtaining a flawed signature re-
specting the fault model defined in Section 3. The Faulted
Sign primitive (line 6) takes as inputs the message m and
the index ind to inject a fault in the single-precision mul-

tiplication rind×dind, computed during the execution of the
signature generation procedure when the multiplication r d,
implemented following Algorithm 2.2, occurs. Given a faulty
signature, (r, s̃), the attack algorithm seeks the value of the
multiplication error occurred in the computation (lines 8–

10) through evaluating each possible value for the point P̂
(line 7). The first step is to compute the value of both
the logarithm argument Q (line 8) and the base point B
(line 9) from the collected signature and the elliptic curve
public parameters. Employing such points, the Optimized
BSGS subroutine computes the discrete logarithm value δ
which contains the useful information regarding the secret
key word dind. If the logarithm exists (i.e., δ ̸=⊥), to dis-
tinguish whether the hazard caused a multiplication error
(MulError=δ (2w)ind+ind) with dind as a factor or not, it is
sufficient to check the divisibility of δ by rind (line 11). Note
that, if rind divides dind the algorithm discards an otherwise
exploitable value of δ; however, this does not hinder the key
recovery process as rind will change at each faulty signature
generation. The hypothesis for the dind word is updated
with the greatest common divisor between the current dind
value and δ (line 12). In such a way, as we will demonstrate
in the following section, the algorithm is able to recover,
with high probability, the actual value of the secret key d,
through collecting only 3 or 4 exploitable faults for each
value of ind (i.e., for each secret key word). Before checking
if the updated hypothesis for the secret key d is correct (see
loop condition at line 5), the procedure increments the in-
dex of the targeted single-precision multiplication (line 14)
preparing the state for the retrieval of another secret key
word. When the public key is correctly derived from the
current hypothesis of the secret key d, the algorithm ends
(line 15).

4.2 Complexity Analysis
The computational cost required to lead the fault attack

previously described is formally expressed by the following
propositions.

Proposition 1 (Key word recovery). Given a fault
injection technique able to correctly put the fault model in
Section 3 into effects, and given ηind as the number of dif-
ferent faults injected on the w-bit word with index ind of the
targeted single-precision multiplication of the ECDSA sig-
nature generation primitive (Algorithm 2.1) the recovery of
the correct value of the corresponding secret key word is ob-
tained in Algorithm 4.1, with a probability of 99%, employing
ηind=4 faults.

Proof. To obtain the correct value of the secret key word
dind, Algorithm 4.1 computes the gcd among different dis-
crete logarithms δ=emf×dind∈{0,. . . ,(2w)2−1}, thus elimi-
nating the random value emf. The correct value of dind will
be therefore recovered when at least two values of emf are
co-prime. A well known result in number theory [10], asserts
that the probability pco that two positive integers (≥2), cho-
sen uniformly at random, are co-prime, ranges in the interval
[1
2
, 6

π2). This, in turn, implies that the probability of obtain-
ing at least one pair of co-prime values, after ηind faults have

been collected, amounts to pok=1−(1−pco)(
ηind
2). Willing to

make a conservative assumption, choosing pco=
1
2
, the orig-

inal value of dind can be obtained with only ηind=4 faults
with a probability pok=0.99. However, for numbers greater
than 15 (i.e., w>4) the probability that two of them have
no common factors quickly increases up to pco≥0.6. Thus,

keeping pco=
6
π2 gives a fault number ηind=3, which is better

suited in practice for any realistic architecture word size.

Proposition 2 (Complexity). Given a fault injection
technique able to correctly put the fault model in Section 3
into effects, the secret key retrieval procedure described in
Algorithm 4.1 recovers the t w-bit words of the private key
used in an ECDSA signature primitive (on average) in
O(t ηind (3 2

w + 3
2
w)) elliptic curve operations.

Proof. Each call to the Optimized BSGS subroutine
(line 10) has an average case complexity of O(3 2w + 3

2
w)

elliptic curve point operations (see Section 4.1).
Indeed, theOptimized BSGS subroutine is called as many

times as the values for the candidate points P̂ having their
reduced x-coordinate equal to the first part of the faulty
signature, (r, s̃) (line 7). The set of candidate points in-

cludes at most four values for P̂, as mentioned in Lemma 1.
However, the probability that there are actually four candi-
dates depends on how much smaller the curve order n can
be with respect to the modulus p of the corresponding finite
field. The actual probability of having four points, when
considering the elliptic curves recommended in the ECDSA

standard is
√

p−1

n
≈ 1√

p
<2−96. Therefore, it is safe to con-

sider the number of candidate points to be always 2, and

the probability of choosing the correct P̂ at first to be 1/2.
As stated in Proposition 1, the algorithm collects ηind val-

ues for each of the t words of the secret key prior to finish,
thus the computational complexity of the whole procedure
is O(t ηind (3 2

w + 3
2
w)).

We omitted the complexity of the calls to the gcd subrou-
tine as this is negligible with respect to the computational
complexity of a single call of the BSGS algorithm.

5. EXPERIMENTAL EVALUATION
We implemented a serial version of the secret key retrieval

procedure shown in Algorithm 4.1 on an Intel Core i7 920
CPU clocked at 2.66 GHz, with 12 GB DDR3-1600 main
memory, employing the Sage toolkit3 running on a x86-64
Gentoo Linux 2011.3 with a 2.6.37 kernel.

Tables 1 and 2 report the performance figures of the key
retrieval algorithm applied to the elliptic curves recommended
by the ECDSA standards. The standard curves are referred
to by the size of the underlying finite field which also in-
dicates the order of magnitude of the cyclic group repre-
sented by the set of elliptic curve points (e.g., the descrip-
tive parameters of the P−192 curve are: a finite field Fp

with p=2192−264−1, and a group order n≈2192).
The tables refer to architectures with processor word size

w=8-bit and w=16-bit, respectively. These word-sizes are
commonly used in embedded systems where the ECDSA
provides strong authentication of the device, such as anti-
counterfeiting RFID tags [11].

The experimental evaluation has been lead averaging the
performance figures out of 30 runs for each combination of
processor word size w and elliptic curve. The first column
of the tables report the average number of faults needed to
recover the whole secret key. The results match the expec-
tations reported in the complexity analysis section and are
proportional to the number of words composing the multi-
precision value of the secret key. The second column shows

3William A. Stein et al. Sage Mathematics Software
(ver.4.6.1), The Sage Development Team, 2011.
http://www.sagemath.org

Employed Avg. No. BSGS Total Attack Storage
Curve, E(Fp) of Faults Time [ms] Time [s] [kiB]

P−192 72 50.6 10.9 6.144
P−224 84 57.0 14.4 7.168
P−256 96 61.7 17.8 8.192
P−384 144 95.0 41.0 12.288
P−521 198 137.0 81.4 16.672

Table 1: Attack performance when considering a
target architecture with processor word size w=8-
bit. The number of words, t, depends on the selected
elliptic curves, with t∈{24, 28, 32, 48, 66}

the time required by a single call to the BSGS routine to
possibly solve an ECDLP, while the third column reports
the average execution time of the entire attack procedure.
Finally, the last column provides the memory fingerprint re-
quired by the attack, where the main part of it is taken by
the tables computed in the BSGS subroutine.
We note that carrying out a key recovery attack against

an implementation of the ECDSA employing any standard
curve on 8- and 16-bit architectures can be managed within
negligible time on a common desktop. It is interesting to
notice that the finite field size, i.e. the usual parameter
considered for the security level of the cryptosystem, has
only a minimal effect on the feasibility of the attacks, as it
occurs as a linear term in the computational complexity of
the presented fault attack. This in turn implies that raising
the field size, and consequentially the key length, has only a
minimal effects in terms of mitigation of our attack.
When considering platforms with processor word size w=32-

bit, the computational complexity of the attack raises signif-
icantly as a consequence of the exponential complexity of the
BSGS method. In such a case, our current implementation
would give projected space and time performance between
18.7 Ms and 68.4 Ms as running time and between 103.1
GiB and 279.7 GiB as storage. These timings and storage
requirements are still within acceptability, when considering
a single commodity desktop. However, due to the nature of
the BSGS algorithm, it is possible for an attacker to speed up
the recovery procedure through exploiting the native paral-
lelism offered by it. In particular modern Graphics Process-
ing Units (GPU) offer a cheap and easily available many-core
environment, particularly well suited to this kind of com-
putational effort. Open literature reports speedups of an
order of magnitude for each GPU employed in the computa-
tion [6,14], provided that the brute force tasks do not need to
communicate with each other. The presented attack can be
parallelized both at secret key word level, i.e. assigning the
computation of a single word (out of t secret key words) to
a different computation node, and splitting the BSGS steps
equally among the available GPU cards. Consequentially,
it is possible for the attacker to achieve a speedup factor of
(10 t#GPUcards), bringing the attack against the ECDSA
primitive implemented on a 32-bit architecture within feasi-
bility in a few days, while exploiting commodity hardware.
For instance, through employing #GPUcards=8 GPU cards,
the required time for the attack can be reduced to ten days
for the P−521 curve.

6. RELATED WORK
Developing fault injection techniques to attack Elliptic

Curve Cryptosystems (ECC) proved to be more difficult
than attacking factoring-based ciphers due to the higher

Employed Avg. No. BSGS Total Attack Storage
Curve, E(Fp) of Faults Time [s] Time [s] [MiB]

P−192 36 6.17 666 1.573
P−224 42 6.46 814 1.835
P−256 48 6.76 973 2.097
P−384 72 8.45 1830 3.146
P−521 99 7.27 2160 4.268

Table 2: Attack performance when considering a
target architecture with processor word size w=16-
bit. The number of words, t, depends on the selected
elliptic curves, with t∈{12, 14, 16, 24, 33}

complexity of the mathematical operations involved. Most
of the proposed attacks exploit the structural similarity be-
tween the modular exponentiation computed through square-
&-multiply used in RSA and the scalar-point multiplication
computed through double-&-add method [2]. In [7, 8] the
authors propose injecting a fault into the public parameter
of the elliptic curve cryptosystem. This way, the interme-
diate computations involving the secret key d will possibly
operate in the set of points of another elliptic curve, whose
cardinality may be lower than the original one, thus mak-
ing it possible to attempt a brute force approach. Another
attack, directly targeted at the ECC algebraic structure, is
described in [9], where the authors notice that a fault in-
jected into the point coordinates during the scalar multi-
plication may move the point into a subgroup of the main
group of curve points (called a twist of the curve), which has
a smaller number of points, thus simplifying a brute force
approach to the ECDLP. The open literature provides few
examples of fault attacks aimed at the secret key retrieval
from the ECDSA signature generation algorithm. The at-
tack presented in [13] relies on faulting the modulus used
in the arithmetic computations, but needs a thousands of
faulty results to be successful against a system employing
even a small-sized curve. A glitch attack is used in [16] to
recover the DSA secret key from a set of faulty signatures
obtained through zeroing some of the least significant bytes
of the random nonce k. A lattice reduction technique (based
on the so-called Hidden Number Problem) is employed to re-
cover the secret key from only 27 faulty signatures having
the least significant bytes reset to zero. In [20] an instruc-
tion skip fault is used to recover some bits of the random
nonce k, employed by the ECDSA signature generation rou-
tine. Subsequently, the collected faulty signatures with the
bits of the corresponding nonces, are intended to be used in
a lattice-attack to recover the secret key. A few dozens of
faulty results are again sufficient for a small-sized curve, but
an efficient countermeasure is also presented. In our attack,
we exploit an information leakage caused by the multiplica-
tion operations performed modulo n, without disturbing any
of the parts of the scalar point multiplication, or the known
parameters of the elliptic curve, with the interesting point
to shift the security considerations about the cryptosystem
to the underlying architectural feature related to the size of
the processor word size. Indeed, the exploited fault model
can be easily put into effects through low-cost fault injec-
tion techniques as clock glitching or the underfeeding of the
power-supply.

7. CONCLUSION
The presented attack effectively exploits the faulty com-

putation of an ECDSA cryptosystem implemented on an

embedded platform to reveal the secret key securely stored
inside it. The defined fault model allows the underlying
ECDLP of the cryptosystem to be mapped on a sequence
of discrete logarithms defined on a much smaller domain.
The proposed key retrieval algorithm has a complexity that
mainly depends on the processor word size and logarithmi-
cally on the size of the underlying finite field. Indeed, the
experimental results show how the choice of elliptic curve pa-
rameters with a greater security level does not bring any sig-
nificant benefit with respect to the proposed attack (whereas
the main security parameter is the bit-size of the word pro-
cessor). There are several low-cost fault injection technolo-
gies described in open literature that can put into effect the
defined fault model.

Acknowledgment
This work was supported in part by the ENIAC Joint Under-
taking, within the Trusted Computing for European Embed-
ded Systems (TOISE) project, call ENIAC-2010-1, proposal
number 282557-2.

8. REFERENCES
[1] American National Standards Institute (ANSI). Public

Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA). Standard ANSI ANSI
X9.62:2005, 2005.

[2] F. Bao, R. H. Deng, Y. Han, A. B. Jeng, A. D.
Narasimhalu, and T.-H. Ngair. Breaking Public Key
Cryptosystems on Tamper Resistant Devices in the
Presence of Transient Faults. in Proc. International
Workshop on Security Protocols, pages 115–124, 1998.

[3] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi.
Low Voltage Fault Attacks on the RSA Cryptosystem.
In Fault Diagnosis and Tolerance in Cryptography,
pages 23–31. IEEE CS, 2009.

[4] A. Barenghi, G. M. Bertoni, L. Breveglieri,
M. Pellicioli, and G. Pelosi. Low Voltage Fault Attacks
to AES. In Proc. of the 3rd Annual IEEE
International Symposium on Hardware-Oriented
Security and Trust (HOST), 2010.

[5] A. Barenghi, G. M. Bertoni, A. Palomba, and
R. Susella. A Novel Fault Attack Against ECDSA. In
4th Annual IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2011.

[6] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi.
Design of a parallel AES for graphics hardware using
the CUDA framework. In IPDPS, pages 1–8. IEEE,
2009.

[7] I. Biehl, B. Meyer, and V. Müller. Differential Fault
Attacks on Elliptic Curve Cryptosystems. In Proc.
CRYPTO, pages 131–146, 2000.

[8] M. Ciet and M. Joye. Elliptic Curve Cryptosystems in
the Presence of Permanent and Transient Faults. Des.
Codes Cryptography, 36(1):33–43, 2005.

[9] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette.
Fault Attack on Elliptic Curve Montgomery Ladder
Implementation. In Proc. Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages
92–98, 2008.

[10] G. Hardy. An Introduction to the Theory of Numbers.
Oxford Science Publications. Oxford Press, fifth
edition, 1979.

[11] M. Hutter, M. Feldhofer, and J. Wolkerstorfer. A
Cryptographic Processor for Low-Resource Devices:
Canning ECDSA and AES like Sardines. In Springer,
editor, Information Security Theory and Practices -
WISTP 2011, 5th International Workshop, Heraklion,
Greece, June 1-3, 2011, Proceedings., volume 6633 of
Lecture Notes in Computer Science, pages 144 – 159,
2011.

[12] Institute of Electrical and Electronics Engineers.
Specifications For Public Key Cryptography. Standard
IEEE 1363-2000, 2000, http://grouper.ieee.org/
groups/1363/P1363/index.html.

[13] M. Kara-Ivanov, E. Iceland, and A. Kipnis. Attacks on
Authentication and Signature Schemes Involving
Corruption of Public Key (Modulus). In Workshop on
Fault Diagnosis and Tolerance in Cryptography, pages
108–115. IEEE CS, 2008.

[14] D. Kirk, W. Hwu, and W. Hwu. Programming
massively parallel processors: a hands-on approach.
Applications of GPU Computing Series. Morgan
Kaufmann Publishers, 2010.

[15] I. Koren. Computer arithmetic algorithms. A K Peters,
Ltd., 2002.

[16] D. Naccache, P. Nguy˜̂en, M. Tunstall, and C. Whelan.
Experimenting with Faults, Lattices and the DSA. In
S. Vaudenay, editor, Public Key Cryptography - PKC
2005, volume 3386 of LNCS, pages 16–28. Springer
Berlin / Heidelberg, 2005.

[17] National Institute of Standards and Technology
(NIST) - U.S. Department of Commerce. Digital
Signature Standard (DSS). Federal Information
Processing Standards Publication 186-3, National
Technical Information Service, Springfield, Virginia,
USA 2009, http://csrc.nist.gov/publications/
fips/fips186-3/fips_186-3.pdf.

[18] J. M. Pollard. Theorems on factorization and
primality testing. Proc. of the Cambridge
Philosophical Society, 76:521–528, 1974.

[19] J.-M. Schmidt and C. Herbst. A Practical Fault
Attack on Square and Multiply. In L. Breveglieri,
S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert,
editors, FDTC, pages 53–58. IEEE CS, 2008.

[20] J.-M. Schmidt and M. Medwed. A Fault Attack on
ECDSA. In D. Naccache and E. Oswald, editors, 6th
Workshop on Fault Diagnosis and Tolerance in
Cryptography - FDTC 2009, Proc., pages 93 – 99.
Verlag IEEE-CS Press, 2009.

[21] N. Selmane, S. Guilley, and J.-L. Danger. Practical
Setup Time Violation Attacks on AES. In Seventh
European Dependable Computing Conference, pages
91–96, Washington, DC, USA, 2008. IEEE CS.

[22] D. Shanks. Class number, a theory of factorization
and genera. Proc. of Symposia on Pure Mathematics,
American Mathematical Society, 20:415–440, 1971.

[23] S. P. Skorobogatov and R. J. Anderson. Optical Fault
Induction Attacks. In CHES ’02: Revised Papers from
the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, pages 2–12, London,
UK, 2003. Springer-Verlag.

[24] C. D. Walter. Systolic Modular Multiplication. IEEE
Trans. Computers, 42(3):376–378, 1993.

[25] L. C. Washington. Elliptic Curves: Number Theory
and Cryptography, Second Edition. Chapman &
Hall/CRC, 2 edition, 2008.

