
High speed cipher cracking:
the case of Keeloq on CUDA

Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi
Dipartimento di Elettronica e Informazione (DEI)

Politecnico di Milano
Via G. Ponzio 34/5, 20133 Milan, Italy

{agosta,barenghi,pelosi}@elet.polimi.it

Abstract: Graphic Processing Units (GPU) are increasingly popular in the field of
high-performance computing for their ability to provide computational power for mas-
sively parallel problems at a reduced cost. However, the programming model exposed
by the GPGPU software development tools is often insufficient to achieve full per-
formance, and a major rethinking of algorithmic choices is needed. In this paper, we
showcase such an effect on a case study drawn from the cryptography application do-
main. The pervasive use of cryptographic primitives in modern embedded systems is
a growing trend. Small, efficient cryptosystems have been effectively employed to de-
sign and implement keyless password-based access control systems in various wireless
authentication applications. The security margin provided by these lightweight ciphers
should be accurately examined in light of the speed and area constraints imposed by
the target environment. Research on this subject has lead to careful cryptanalyses
of ciphers such as CRYPTO-1 (used for micropayment purposes) and KEELOQ (em-
ployed in vehicle keys). We present a re-design of the ASIC-oriented KEELOQ imple-
mentation to perform efficient exhaustive key search attacks while fitting tightly the
parallel programming model exposed by modern GPUs. Indeed, the bitslicing tech-
nique allows the intrinsic parallelism offered by word-oriented SIMD computations to
be effectively exploited. Through proper adaptation of the algorithm implementation
to a platform radically different from the one it was designed for, we achieved a ×40
speedup in the computation time w.r.t. a single-core CPU bruteforce attack, employ-
ing only consumer grade hardware. The outstanding speedup obtainable points to a
significant weakening of the security margin of the cipher, since it proves that anyone
with off-the-shelf hardware is able to circumvent the security measures in place.

1 Introduction

In the last years, Graphics Processing Units (GPUs) have raised wide interest as sources
of computational power for non-graphical applications, due to the availability of program-
ming models such as CUDA and OpenCL that are vastly more accessible to experts of
other domains than graphics rendering APIs (OpenGL and DirectX) [OHL+08]. A major
strength of GPGPU-based platform are their appealing cost-performance figures of merit.
In recent times even in the field of High Performance Computing there have been major
investments to build GPGPU-based supercomputers.

However, there are also factors that hinder the expansion of GPGPU computing, espe-
cially the difficulty of programming efficient applications using the available program-

ming models. Special attention must be placed to tailor the application and its algorithmic
components to the specific needs of the parallel hardware, e.g. by minimizing control flow
divergence and exposing as much parallelism as possible while minimizing synchroniza-
tion overheads [OHL+08]. In this paper, we show how the use of specialized techniques
can lead to large speedups, thus allowing the GPU to contend on an equal or favorable
base (in terms of computation throughput per euro) with solutions based on CPUs or re-
configurable hardware.

The field of cryptography has been explored since the first GPGPU attempts using graphics
rendering APIs [HW07]. Especially, code breaking is attractive, because it requires vast
amounts of computational power. We use as a case study the KEELOQ algorithm [Mic11],
which is used in remote keyless entry systems (e.g., vehicle doors or building entrances)
or as authentication mechanism in wireless protocols.

Remote keyless entry systems are based on a password based access control mechanism
realized through the unidirectional transmission between a secure token (encoder) and a
receiver (decoder). Unauthorized accesses are possible when the encoded password (ac-
cess code) is fixed or it is derived from a relatively low number of possible combinations.
In order to prevent this kind of threat, KEELOQ is employed in the so-called rolling code
(also known as hopping code) mode of operation. The basic idea is to have the access code
change each time it is used through picking it from a sequence of codewords that cannot
be predicted even knowing a very large number of previously used ones. The generation
of such a sequence is based on the definition of both a uni-directional command trans-
fer protocol and an encryption engine to provide the codewords to be transmitted. From
an operational point of view, the information transmitted by the encoder is composed by
two parts: the code-hopping part (which changes each time the encoder is activated) and
a second un-encrypted part, principally containing the encoder serial number, used for
identifying the transmitter at a receiving decoder. To this end, the receiver decrypts the
codeword, and compares the recovered counter value with its internal one, and the recov-
ered serial number with the one received along with the codeword. If both values match,
the token is granted access.

Algorithms such as KEELOQ are designed for dedicated hardware implementation, since
the target devices (remote controllers) are manufactured as very low cost ASICs. So, their
direct implementation in software has much lower performances – which, in principle,
makes it easier to carry out an attack using configurable hardware such as FPGAs. How-
ever, we show how the introduction of a level of parallelism not commonly seen in GPGPU
algorithm design, bit-level parallelism, can lead to a ×40 speedup over a CPU core.

The rest of this paper is organized as follows. Section 2 introduces the KEELOQ cipher,
while Section 3 reviews the characteristics of the NVIDIA GPU families target in this
study, as well as the SIMT programming model as implemented by the CUDA develop-
ment tools. Section 4 describes the design of our solution and Section 5 provides the
experimental evaluation on the case study. Finally, Section 6 outlines the most closely
related works, while Section 7 draws some conclusions.

2 The KEELOQ Cipher

Remote keyless entry systems such as the ones employed in building doors and vehicles
require a small and power efficient cipher in order to build a challenge-response authen-
tication mechanism. The class of cryptographic primitives commonly employed in this
scenario is the one of stream ciphers.

A stream cipher outputs a pseudorandom sequence of bits, known as keystream, depend-
ing on the values of the inner state of the algorithm, which is never disclosed. The inner
state is initialized employing a secret value, the key, during a bootstrap phase, while the
keystream is not emitted. The encryption is performed via a bitwise xor of the keystream
with the plaintext: since this operation acts bitwise, there is no need to pad the plaintext
message, regardless of its length. One of the most common way to generate a pseudoran-
dom keystream is to employ a Feedback Shift Register (FSR): this component is basically
a shift register where the contents are shifted of a single bit per clock cycle, and the new
bit entering the register is generated as a function of the previous content of it. Sub-
sequently, one bit of the keystream is derived as a function of the new contents of the
register for every cycle. Even if linear feedback functions can be used in order to compute
the feedback bit (such FSRs are thus denominated Linear Feedback Shift Registers), it is
not cryptographically safe to do so, as it is possible to completely rebuild the structure and
content of the LFSR only from the output keystream, provided also the output function is
linear. Following the previous consideration, the FSR employed to build stream ciphers
are endowed with a Non-Linear Feedback function and/or a non-linear output function.
Non-Linear Feedback Shift Register (NLFSR) are nowadays largely employed in modern
ciphers 1, as they provide a very favorable tradeoff between area and performances, while
retaining a good security margin. NLFSRs are known to be more resistant to cryptanalytic
attacks than linear FSRs, although building NLFSRs with guaranteed pseudo-randomness
properties (such as providing an exact bound on the length of the period in the output bits)
is still an open problem.

KEELOQ is the most scrutinized encryption engine used in remote keyless entry systems.
It is a proprietary hardware-dedicated NLFSR-based block cipher, designed by G. Kuhn
taking strong inspiration from stream cipher design techniques. Figure 1 shows the internal
structure of the KEELOQ cipher: the secret key is stored in the red register on the left and
is at most 64-bit wide. The key register is a FSR, and the key is mixed with the output of
the state one bit per clock cycle. The 32-bit long NLFSR on the right hand side constitutes
the nonlinear component of the cipher providing its effective security margin. Five bits
of the NLFSR are combined together by means of a non linear function described by an
equation over Z2 among five bits of the status register. The non linear function outputs a
single bit per clock cycle, which is added to the aforementioned key bit and to b16 and b0,
and employed as the feedback bit of the NLFSR. To encrypt a 32-bit plaintext block, the
NLFSR is initialized with the value of the plaintext, and subsequently the entire system is
clocked 528 times. After the 528 updates of both registers, the content of the NLFSR is
the final ciphertext.

The most common mode of operation for KEELOQ is the so-called hopping code, in a sce-

1The eSTREAM Project, http://www.ecrypt.eu.org/stream/

0

63

Non

Linear

Function

1

62
31

26

20

16

9

1

0
...

...
...

...
...

(a) Encryption

0

63

Non

Linear

Function

1

62
30

25

19

15

8

1

0

...
...

...
...

...

15

31

(b) Decryption

Figure 1: Keeloq Cipher

nario where a remote encoder transmits a codeword to the authorizing decoder (receiver).
This mode of operation involves encrypting a plaintext built out of a counter and a unique
identifier (ID) of the encoding device. Every time a new 32-bit codeword (i.e. a ciphertext
block) must be generated, the counter is incremented and the new plaintext is encrypted.
Then, the codeword is transmitted along with the encoding device ID. The secret 64-bit
key of any encoder is generated through the decoder engine as a pair of 32-bit codewords.
Such a procedure implies that the decoder is able to generate the secret keys for a number
of encoders starting from: (i) an embedded 64-bit master key (which is fixed by the manu-
facturer of the keyless entry system), (ii) the ID of the encoding device, (iii) and a random
seed composed by 32, 48 or 60 bits.

A potential attacker may retrieve the master key from the decoding device (receiver) and
eavesdrop the ID of an encoder when it is transmitted along with a codeword. Therefore,
the use of a secret random seed in the secret key generation phase avoid the leakage of the
secret key of the targeted encoder.

A brute-forcing attack aimed at recovering the secret key of the transmitting encoder (EK)
employs two consecutively transmitted codewords, each of which is bound to the encoder
ID. The attacker computes a candidate 64-bit value for EK through guessing on the bits of
the random seed, while the value of the remaining part of the secret key is easily derived
from the specification of the key generation protocol. Subsequently, she checks the ID
value resulting from the decryption of the first codeword, and whether a match is found,
the output derived from the decryption of the second codeword (employing the same EK)
is used as a confirmatory step.

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

L2 Cache

Figure 2: Overview of the NVIDIA GTX470 (Fermi) streaming processors architecture: each stream
multiprocessor (SM) contains 32 streaming processors (SP), plus four special function units (SFU).
A configurable L1 cache/shared memory is local to each stream multiprocessor, while L2 cache is
shared among the entire set of SM. Up to 16 SM can be present in a single unit.

3 General Purpose Computing with GPUs

The GPGPU devices targeted in this work are based on the NVIDIA GT200 and Fermi
architectures. Figure 2 shows a sketch of the NVIDIA GTX470 (Fermi) streaming pro-
cessor array. A streaming multiprocessor (SM) contains 32 streaming processors, four
special functional units and a multithreaded instruction issue unit (respectively indicated
as SP, SFU and MT-Issue in Figure 2. This is a fourfold increase over the GT200 SMs. A
streaming multiprocessor concurrently executes two groups of 32 threads called warps, for
a total of 64 concurrent threads. Since each thread in a warp has its own control flow, their
execution paths may diverge due to the independent evaluation of conditional statements;
when this happens, the warp serially executes each path. Each multiprocessor executes
warps much like the Single Instruction Multiple Data (SIMD) paradigm, as every thread
is assigned to a different SP and every active thread executes the same instruction on dif-
ferent data. Finally, the Fermi architecture includes both L1 and L2 cache memories, with
the L1 configurable between cache and shared memory behaviours and shared by the SPs
in a single SM, and the L2 shared among all SMs in the device. The earlier GT200 only
has a fast shared memory shared within each SM.

GPGPU computing requires the programmer to manage a heterogeneous system (CPU
host plus GPU device) as well as to handle the massive parallelism exposed by the GPU
hardware. The Compute Unified Device Architecture (CUDA) [NBGS08, NVI08], pro-
posed by NVIDIA for its graphics processors starting with the G80 series [LNOM08],
exposes a programming model that integrates host and GPU code in the same C++ source
files. On the GPU device side, a Single Instruction, Multiple Threads programming model

is exposed, where a single kernel is executed by a user-specified number of threads. Every
CUDA kernel is explicitly invoked by host code and executed by the device, while the
host-side code continues the execution asynchronously after instantiating the kernel. On
the host side, a specific synchronizing function call is provided to wait for the completion
of the active asynchronous kernel computation.

The CUDA programming model abstracts the actual parallelism implemented by the hard-
ware architecture, providing the concepts of block and thread to express concurrency in
algorithms. A block captures the notion of a group of concurrent threads. Blocks are
required to execute independently, so that it has to be possible to execute them in any
order (in parallel or in sequence). Therefore, the synchronization primitives semantically
act only among threads belonging to the same block. Intra-block communications among
threads use the logical shared memory associated with that block.

Since the architecture does not provide support for message-passing, threads belonging
to different blocks must communicate through global memory. The global memory is
entirely mapped to the off-chip memory. The concurrent accesses to logical shared mem-
ory by threads executing within the same block are supported through an explicit barrier
synchronization primitive.

A kernel call-site must specify the number of blocks as well as the number of threads
within each block when executing the kernel code. The current CUDA programming
model imposes a capping of 512 threads per block.

The mapping of threads to processors and of blocks to multiprocessors is mainly handled
by hardware controller components. Two or more blocks may share the same multiproces-
sor through mechanisms that allow fast context switching depending on the computational
resources used by threads and on the constraints of the hardware architecture. The number
of concurrent blocks managed by a single multiprocessor is currently limited to 8.

In addition to the logical shared memory and the global memory, in the CUDA program-
ming model each thread may access a constant memory. An access to this read-only
memory space is faster than one to global memory, provided that there is sufficient access
locality since constant memory is implemented as a region of global memory fit with an
on-chip cache. Finally, another portion of the off-chip memory may be allocated as a local
memory that is used as thread private resource. Since the local memory access is slow,
the shared memory also serves as an explicitly managed cache – though it is up to the
programmer to warrant that the local data being saved in shared memory are not accessed
by other threads. Shared memory comes in limited amounts (threads within each block
typically share 16 KB of memory) hence, it is crucial for performance for each thread to
handle only small chunks of data.

Note that while the OpenCL language and API [Khr11] are gaining momentum as the
industry standard in programming heterogeneous platforms composed of host CPUs and
programmable accelerators, including GPGPUs, the implementations provided are still
not mature enough to compete, on NVIDIA devices, with the vendor-specific software
development tools. However, the programming model provided in OpenCL is, as far as
GPGPU programming goes, essentially based on the same principles as the SIMT model
exposed in CUDA, so the techniques and results shown in this work can be easily extended
to OpenCL-driven devices.

4 Adaptation to Parallel Architectures

Many-core architectures offer large amount of parallel computing power by supplying the
developer with hundreds of processing cores, each endowed with limited resources. In
GPGPU, key resource limitations include:

Control flow divergence as multiple divergent control flows can be handled safely from
the point of view of functionality, but with major performance losses as parallelism is
inhibited along the different control flows – essentially, divergent flows of control are
serialized, regardless of the data dependences among the divergent threads (which may
well be non-existent). This limitation is due to the hardware design of GPGPU, where the
processors in a multiprocessor unit are bound to the same program counter.

Local memory availability as a limited amount of very fast local memory must be shared
among numerous processing elements. While the sharing allows fast communication
among the processing elements, the local memory is much more useful when used in a
read-only way, or partitioned for local use by each processing element, since true shared
accesses still require costly synchronization operations, and are often difficult to code.

To exploit such parallel computing power, the critical issue is to be able to express a given
application or algorithm in a form amenable to parallel execution on the target device. The
literature reports three main sources of parallelism, which can be exploited with different
degrees of success on various types of parallel architectures:

Thread-level parallelism is obtained when two or more tasks (regions of code with in-
dependent control flow) can be executed in parallel with few or no data dependencies (in
the former case, synchronizations will be needed within each task, in the latter the syn-
chronization point will be the end of the tasks). Thread-level parallelism is exposed by
complex applications, where multiple independent tasks are performed, and is best ex-
ploited on symmetric multiprocessors, where each processor is endowed with sufficient
resources to executed its assigned task. It is not suited for GPGPUs, since control flow
divergence is a major factor for performance reduction in these architectures.

Loop-level parallelism is found in parallel loop constructs, where each iteration of the
loop is data-independent from the others (or has limited synchronization requirements).
Loop level parallelism is an excellent fit for vector processors, SIMD processors and GPG-
PUs, since control is fixed and identical for all iterations (barring nested conditionals,
which can often be transformed to predicated code).

Instruction-level parallelism is achieved at the finest of the three common granularities,
where independent instructions can be parallelized. It is commonly exploited by super-
scalar and Very Long Instruction Word architectures, but, like Thread-level parallelism,
it is unsuitable for GPGPU due to the need to executed different instructions in parallel,
rather than the same instruction of different data.

It would therefore seem that Loop-level parallelism is the only viable choice for GPGPUs,
but this model is not exposed by many types of codes. A typical example are encryption
primitives designed for hardware implementation. In this case, parallelism is rarely avail-
able, but this is not an issue, since the implementation is performed through dedicated
ASIC, and may be even considered a benefit, since software implementations are often

aimed at breaking the encryption through brute force attacks. The usage of GPGPUs to
perform brute force attacks is well-documented, but is often limited to mere juxtaposition
of several encryption operations with different keys.

However, it is possible to push the parallelization further, by introducing an entirely dif-
ferent level of parallelism, Bit-level parallelism. Here, the goal is to parallelize operations
at the single bit level, thereby obtaining remarkably uniform parallel operations. This
technique is know as bitslicing [Bih97].

Bitslicing refers to a software technique of using a general purpose CPU to implement
Single Instruction Multiple Data (SIMD) operations. The enforced strategy consists of
packing the bit values belonging to different operands within a single register and of us-
ing general-purpose arithmetic/logic instructions as specialized virtual processing engines
designed for SIMD operations at bit level.

Most of the symmetric cryptographic primitives are designed to process input data at bit
level. Therefore, the software implementations of such algorithms on not-specialized ar-
chitectures may greatly benefit from the application of the bit-slicing strategy as long as
the underlying hardware resources in terms of number of registers are easily available.
Biham [Bih97] achieved significant gains in performance of DES by using this method.

In the case of KEELOQ breaking, the bitslicing technique is employed in the following
way. To break the cipher by brute force, we need to try the encryption of the same plaintext
using all possible keys. The plaintext, in the original version, is a 32-bit word. We expand
it to a 32-words array, where the i-th word in the array is 0xFFFFFFFF if the i-th bit
of the original plaintext was 1, or 0x00000000 otherwise. We then generate the keys (each
of 64 bits) starting with the 0x0000000000000000 key and progressively increasing its
value. Each 64-words array generated in this way has the five last words (corresponding
to the lower bits of the original keys) always correspond to the encoding of the same 32
values which are added to a “base” key value, which increases in steps of 32.

Thus, the number of parallel encryption runs is 32 per thread, with configurable number
nthreads of threads per each CUDA block. Overall, a grand total of 32×nthreads×nblocks

encryption runs are performed at every time by the GPU.

5 Experimental Results

We implemented a fully bitsliced version of the Keeloq cipher both employing the CUDA
programming model and pure C. The pure C version has been run on the host CPU to
provide a reference implementation as far as throughput goes.

5.1 Experimental settings

The running environment where the bruteforcing speed tests were performed is an Intel
Core i7 920 based system with 12Gb DDR3 DRAM, running Gentoo Linux AMD64. All
the GPU binaries were compiled employing nvcc 4.0 from nVidia CUDA toolkit 4.0,

while the CPU baseline versions were compiled with gcc 4.4.6. The bitsliced implemen-
tation of the cipher has been tested on two different GPUs, which have been mounted
as the only device on the 16 lane PCI-Express 2.0 port available on the motherboard in
order to test the difference in performances. The first GPU card is a GeForce GTX 260
equipped with 894 Mb of GDDR5 video RAM and 192 CUDA cores, while the second
card employed for testing is a GeForce GTX 470 with 448 CUDA cores and 1280 MB of
GDDR5 video RAM.

5.2 Performance Evaluation

An important step in the evaluation of the performances of our bitsliced implementation
of Keeloq on CUDA is the exploration of two parameters: the number of threads compos-
ing a CUDA block and the number of blocks constituting a CUDA kernel call. The first
parameter regulates the level of register pressure on the shared register file of the stream-
ing multiprocessor and the number of warps into which a CUDA block is split. Since
the basic execution unit of a streaming multiprocessor is a single warp, the choice of the
number of threads should consider only multiples of 32 to achieve the best fit. The level of
register pressure on the Fermi architecture is dictated by the fact that the 32768 registers
are shared among the contexts of up to 3 different blocks which can be scheduled on the
same streaming multiprocessor. In addition to this, the SMP issue unit of the Fermi archi-
tecture is able to dual issue warps, thus it is necessary to keep twice the contexts in the
registers. Combining these data with the fact that a single bitsliced keeloq breaking thread
employs at most 45 registers, we obtain a SMP register pressure which can be computed
as 270×nthreads. The second parameter to be chosen regulates the level of global compu-
tational load imposed on the GPU. The main point in choosing this parameter is provide at
least enough computations to the GPU so that no SMPs remain idle. Moreover, since the
SMP issue unit is able to interleave different blocks in order to hide global memory access
latencies, it is wise to provide extra workload to the GPU to exploit this feature. These
two considerations pointed to the creation of a CUDA kernel as large as possible with
architectures up to the GT200, since the static scheduling of the blocks on the SMPs did
not account for extra time overhead. With the introduction of a new scheduler for multiple
kernels on the Fermi architecture, this consideration may not be still valid.

Figure 3 reports the results of the exploration of the implementation parameter space:
coherently with the previous considerations, the best solution is reached with 128 threads
per block (34560 employed registers), when the number of blocks per SMP is enough to
fill all the issue queues completely. Raising further the number of blocks per kernel leads
to a decrease in performances which can be ascribed to the extra context switching effort
imposed on the new scheduler. As expected also raising further the number of threads per
block leads to a significant decrease in throughput due to the hindering of context switches
caused by the frequent register spills and fills.

An analogous exploration campaign has been lead also on the GTX260 card, yielding 64
threads per block as the best performing choice of the parameter. This choice is coherent
with the fact that the shared register file of the GTX260 is 16384 since 64 threads per
block allow the issue unit of the streaming multiprocessor to perform the context switching

!th

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

32 64 128 256 384 512

T
hr

ou
gh

pu
t [

M
ke

ys
/s

]

Threads per block

256 blocks
128 blocks
64 blocks
32 blocks
16 blocks
8 blocks

Figure 3: Throughput of the bitsliced implementation of the Keeloq breaker on the Geforce GTX470
card, related to the number of threads per block and the number of blocks per CUDA kernel invoca-
tion

Seed Single Core Four Cores Single GPU
Length Core i7 920 [h] Core i7 920 [h] GTX260 [h] GTX470 [h]

32 2.6 0.73 0.14 0.04
48 1.73 105 4.84 104 9.45 103 3.98 103

60 7.08 108 1.98 108 3.81 107 1.63 107

Throughput 4.51 105 1.61 106 8.27 106 1.96 107

Table 1: Expected timings to run an exhaustive search of the correct seed for key generation for the
different platforms. The

between the three blocks in queue without the need to spill part of the register file to the
global memory. In this case, however, increasing arbitrarily the number of blocks per
kernel did not induce any performance penalty as expected from the GT200 architecture.

After choosing the optimal number of threads per block and blocks per kernel invoca-
tion, we evaluate the effective time needed in order to break the Keeloq key generation
mechanism, with respect to the length of the employed seed. Table 1 reports the expected
running times of an attack, depending on the chosen platform to perform the exhaustive
search. Taking as a reference value the throughput obtained by the bitsliced implementa-
tion of Keeloq running on the host CPU (419430 keys/s), we notice that employing a 32
bit seed for the key generation does not yield a sufficient security margin, as the remote
key can be recovered in 3 hours of computation. The bitsliced implementations running
on the GTX260 and GTX470 GPUs achieve a ×20.5 and a ×43.5 speedup respectively,
allowing a possible attacker to breach even the security of the 48 bit seed key generation

mechanism in a few months. Since the exhaustive search can be split over multiple GPUs,
it is possible to lower the attack time to a single week, while keeping the cost envelope
of the equipment below $10000, as this budget allows an attacker to build a 20 GTX 470
cluster with the current market prices.

6 Related Work

The first cryptanalysis of KEELOQ is presented in [Bog07]. The attack is based on the
slide technique and a linear approximation of the non-linear Boolean function used in the
cryptographic engine. The attack requires 252 encryptions, 16GB of storage and the entire
codebook, i.e., 232 known plaintexts. In [IKD+08] the authors introduce a specific key
recovery attack against KEELOQ which combines the technique of slide attacks with a
novel meet-in-the-middle approach. Their method requires 216 chosen plaintexts and has
a time complexity of 244.5 encryptions which results in about two days of computation
employing 50 dual core CPUs at the cost of approximately 10Keuro. The widely adoption
of KEELOQ in practice, paved the way to side-channel analysis as a further viable option
for attacking chips that implement it. In [EKM+08] the first successful DPA and DEMA
attacks on KEELOQ implementations applied to both Identify Friend or Foe (IFF) and
code hopping devices, are presented. The attack is prevented if a 60-bit seed value, with
good random properties, is employed for the key derivation. Nevertheless, considering the
other commonly implemented options of the cipher, the authors reported how to reveal a
manufacturer key from a receiver using a few 1000 power traces, and how to recover the
device key of a remote control with as few as 10 traces. In [CBW08] the authors apply
algebraic techniques to cryptanalyze the cipher. This attack employs the entire codebook,
227 encryptions and has an estimated success probability of 44%. The results of a brute-
force attack, implemented on the FPGA-based code-breaker COPACOBANA, are reported
in [NK09]. The authors claim the secret key recovery of a remote control in less than 0.5
seconds if a 32-bit seed is used and in less than 6 hours in case of a 48-bit seed. The
case of a 60-bit seed needs in the worst case about 1011 days at the cost of approximately
10Kdollars.

7 Conclusions

In this paper, we showed how to carry a brute force attack on the Keeloq cipher, popular
in remote keyless entry systems, by exploiting the vast amount of parallelism exposed by
modern graphic processing units. We proposed a full redesign of the computation strategy
from the original hardware implementation-oriented algorithm to reach high performance
in parallel software, by exploiting SIMD techniques down to the bit level. We report a
speedup of ×40 speedup in the computation time with respect to a CPU brute force attack,
even though only consumer-grade hardware is used.

References

[Bih97] Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, editor, FSE,
volume 1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.

[Bog07] Andrey Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher. In Dingyi Pei,
Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Inscrypt, volume 4990 of Lecture
Notes in Computer Science, pages 66–80. Springer, 2007.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide Attacks
on KeeLoq. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer
Science, pages 97–115. Springer, 2008.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salma-
sizadeh, and Mohammad T. Manzuri Shalmani. On the Power of Power Analysis in
the Real World: A Complete Break of the KeeLoqCode Hopping Scheme. 5157:203–
220, 2008.

[HW07] Owen Harrison and John Waldron. AES Encryption Implementation and Analysis on
Commodity Graphics Processing Units. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 209–226.
Springer, 2007.

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Preneel. A
Practical Attack on KeeLoq. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[Khr11] Khronos OpenCL Working Group. OpenCL - The open standard for parallel pro-
gramming of heterogeneous systems. http://www.khronos.org/opencl/,
Jan 2011.

[LNOM08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. Micro, IEEE, 28(2):39 –55, 2008.

[Mic11] Microchip Technology Inc. Security and Authentication Design Center –
KEELOQ c⃝3 Development Kit. http://www.microchip.com/stellent/
idcplg?IdcService=SS_GET_PAGE&nodeId=2074, Dec 2011.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with CUDA. ACM Queue, 6(2):40–53, March 2008.

[NK09] Martin Novotny and Timo Kasper. Cryptanalysis of KeeLoq with COPACOBANA.
In Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’09), 2009.

[NVI08] NVIDIA Corporation. CUDA Technology. http://www.nvidia.com/CUDA,
September 2008.

[OHL+08] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879 –899, May 2008.

