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Abstract The vast diffusion of microcontrollers has led to their employment in se-
curity sensitive contexts, where the need for trusted implementations of cryptographic
algorithms is paramount. These architectures are usually endowed with software and oc-
casionally hardware implementation of ciphers, but in both cases, the price envelope is the
first figure to be optimized. The vast diffusion and the tight budget to which these devices
are bound, has pushed for the design of efficient engineering solutions in terms of tradeoff
between attack resistance and cost. The strongest threat to microcontroller security has
been proven to be represented by side channel attacks: power consumption analysis and
Electro-Magnetic (EM) emissions analysis being the prime opportunities to retrieve the
secret key embedded in the devices via commonly overlooked information leakage. We
propose an efficient solution to the problem of compromising EM emissions from an em-
bedded device, showing which are the design space parameters available to the designer,
and how to appropriately tune the security margin with respect to the performances,
obtaining an order of magnitude improvement over the state-of-the-art solutions.
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1 Introduction

Nowadays, the most pervasive computation devices are
the microcontrollers. These small, single chip devices are
employed in a wide variety of application scenarios, in
such an extensive way that their presence often goes un-
noticed, thanks to their deep integration degree. The
most prominent trend in this respect is represented by
the Internet of Things (?): the growing trend of em-
bedding small computing platform in a variety of com-
mon objects, ranging from the common household ap-
pliances to e-health devices, which may benefit from
the possibility of communicating their state via Inter-
net to interested stakeholders (the house owner and the
physician respectively). Another widespread application
of low cost microcontrollers is their use as means of
building remote keyless entry systems (?) such as garage
doors and car openers, or electronic locks for reinforced
doors. In this case the microcontrollers employ challenge-
response schemes to provide a secure digital counterpart
to the common physical keys. Following the same line
of thought, also digital currency, in the form of both
smart cards employed as credit cards (?), and contact-
less near field payment systems is implemented on small
microcontrollers (?). In this case, the microcontrollers
deal with providing the owner with the means to safely
authenticate payment orders, thus effectively hindering
the counterfeiting of them by malicious individuals. The
security margin provided by such systems raises effec-
tively the bar of technical skills needed to counterfeit
a payment order, without impacting negatively on the
usability of the systems. The use of microcontrollers is
also widespread in industrial and environmental moni-
toring sensor networks. In this case, these devices match
the low cost and low power consumption requirements
to implement efficiently and in a cost-effective manner
the “Smart Dust” paradigm: the vision of a very large
amount of sensors monitoring all the aspects of the pro-
duction process and reporting the results in realtime.

To meet the requirements for all the aforementioned
scenarios, the microcontroller is bound to a tight budget
for the final price of the device. The typical microcon-
troller is bound to be a single chip device, which incor-
porates some permanent storage in the form of Flash
memory, holding the applications, and a small amount
of SRAM to hold the temporary values being computed.
The device usually has no memory management unit,
thus lowering the costs and the power consumption. This
simplification in the architecture is mutuated by the fact
that these devices run without a full fledged operating
system on board. Depending on the required features,
the microcontroller is endowed with a variety of I/O
buses, which range from the common RS-232 serial port
to USB and SPI buses, and usually sports one or more
ADC to acquire the environmental data.

The working environments for smart embedded sys-
tems are characterized by their paramount requirement
regarding the security of the system. In fact, all the afore-
mentioned scenarios involve possible economical losses or

even life-threatening situations in case a malicious indi-
vidual subverts the regular functioning of the microcon-
trollers regulating environmental hazard surveillance or
biomedical equipment. Due to the resource constrained
execution setting, it is common to implement the se-
curity services of confidentiality, integrity and availabil-
ity employing only a symmetric block cipher, and em-
bedding the shared secret key in the device at deploy
time. Common block ciphers employed to this end are
the Advanced Encryption Standard (AES), Triple DES,
PRESENT1 and KASUMI2. This strategy, although par-
ticularly cost effective, is founded on the assumption
that the secret key cannot be extracted from the inter-
nal flash memory by any means. To this end, the de-
vices are equipped with physical means (lockdown fuses
on silicon) which allow the designer to impede the ex-
traction of the secret key. Nonetheless, an entire class
of attacks targeting these systems aims at extracting
the secret key exploiting Side-Channels over which sen-
sitive information is leaked unintentionally. Side-channel
attacks (SCA) rely on the fact that observing param-
eters of a cipher implementation yields information on
the values being computed by the device, and thus also
on the secret key being employed. Common side chan-
nels exploited by attackers are the power consumption
of the device, its electromagnetic (EM) emissions, the
time taken to compute the cryptographic primitive, or
the faulty results obtained through disturbing the com-
putation process (???????). The key principle of these
attacks is to predict the behavior of a small, key depen-
dent part of the device, guessing the portion of the key:
this results in building a number of models of the de-
vice, which are subsequently compared with the actual
measurements through statistical tools. The comparison
reveals which one among them is the correct model , thus
revealing the correct key portion.

Contributions
Our contribution in this work regards the description of
the design space options available to a designer in an
applicative scenario to secure cryptographic implementa-
tions of block ciphers on microcontroller platforms, and
the description of a new strategy to reduce the perfor-
mance penalties by an order of magnitude with respect
to the current state-of-the-art. We tackled the resistance
to EM emissions side channel attacks, as it is hard to
solve this problem without significantly increasing the
price envelope of the device through adding EM shields.
By contrast, it is possible to hinder side-channel attacks
based on power consumption through the use of a cur-
rent flattening circuit, which can be embedded on the
microcontroller at a negligible production cost (?). We
have chosen as a case study the software implementation
of the Advanced Encryption Standard on ARM-based
microcontrollers. We will provide an in-depth analysis,
validation and comparison of the resistance of the alter-
native implementations against EM-based side-channel
attacks.
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Paper Contents
This work is organized as follows: Section 2 provides the
background notions on EM emissions and the EM side-
channel analysis techniques employed by the attackers.
Section 3 provides a security analysis of the countermea-
sures employed in literature. Section 4 elaborates on the
computational complexity of SCA attacks against block
cipher implementations to derive the protection require-
ments followed by our proposal for a secure and efficient
block cipher SW implementation. Section 5 introduces
the case study and describes the design alternatives of
the cipher implementations. Section 6 reports the exper-
imental results on a widely popular ARM-based micro-
controller. Finally, Section 7 provides a summary of the
related literature and Section 8 draws our conclusions.

2 The Electro-Magnetic Side-Channel

Any electrical or electronic device creates a so called
electromagnetic (EM) environment as the electrons flow
around the circuit with a variable rate. The intensity
of the EM emissions depend on the geometric area of
the circuit and on the rate of change of the electric cur-
rent (or of the electrical potential difference). Indeed,
the emitted EM field is mostly due to the common-mode
currents (i.e. current flows without any other close-by
opposing current) on conductive tracks. In addition, also
the interference produced by any other source emitter
(e.g., another part of the circuit or an external source)
influences the EM environment of the target device via
coupling effects that highly depend on the specific de-
vice geometry. Hence, the EM environment of the de-
vice can be ascribed to either base-band signals from
direct emanations or signals unintentionally modulated
at higher frequencies, which are not necessarily related
to the working clock frequency. As the emissions of the
circuit are correlated with the current flow within it, it is
possible to gain a high amount of information on the on-
going computations through measuring them. Although
a high precision measurement setup for these emissions,
such as the one used in electromagnetic compatibility
testing (EMC) is expensive and requires strong techni-
cal knowledge to be operated, it is possible to devise a
cheap and simple measurement setup with off-the-shelf
components, and operate it in a rather simple fashion,
while still obtaining satisfactory measurements. In par-
ticular, it is possible to build an EM probe out of a simple
coil of copper wire and sample the voltage drop at its
ends, while it is placed close to the emitting circuit, thus
measuring what are commonly defined as near-field EM
emissions of the circuit. The whole workbench for such a
measure is constituted by the aforementioned EM probe
and a digital oscilloscope to sample and store the voltage
drop values at the end of the probe.

2.1 EM Emission Model and Correlation Attacks

The main cause of EM emissions for digital circuits at a
close range is represented by the metal wiring which con-
nects the transistors on the silicon die. Due to the very
large number of such wires and active components, mod-
eling the EM emissions of an integrated circuit cannot
be done with a sufficient accuracy through the common
methods (e.g. superimposition of the effects of multiple
equivalent dipoles, equivalent radiating structures). Due
to design time placement constraints, the longest wires
on the die are usually the memory buses; moreover the
bus wires are usually placed as a sheaf and thus there is
no destructive interference in their magnetic radiation,
making these wires one of the main contributors for the
emissions. However, albeit the contribution is smaller in
entity, also the wiring of the computational logic pro-
vides a contribution to the global emission, which is still
related to the data being computed.

Considering only the wires carrying the sensitive
data, it is possible to model the data dependent EM
emission employing the Hamming Weight of the values
being carried. This is justified by the fact that the inten-
sity of the magnetic field radiated by a wire is directly
proportional to the entity of the current flowing through
it. As this field is sensed through measuring the volt-
age drops at the ends of a coil, the measured quantity
is proportional to the Hamming Weight of the carried
value (??).

This relation between the entity of the emissions and
the data being processed is the one exploited by EM side
channel attacks to deduce the values of the secret key em-
bedded in the device. As a first step the attacker selects
an operation of the cryptographic primitive combining a
portion (e.g. one byte) of the key with a known piece of
data (e.g. the ciphertext or any other predictable value).
The attacker models the emitted EM radiation during
the selected operation, for each possible value of the key
portion, and evaluates the correlation of the models with
the actual measured emissions. This procedure is usually
performed through evaluating the Pearson’s correlation
coefficient between the models and the actual measure-
ment for a large number of inputs of the circuit, thus
resulting in only the correct model having non negligible
correlation (???).

3 EM Analysis Countermeasures

Methods and principles employed to put into effect secu-
rity countermeasures against EM attacks are split into
two categories: damping of the emitted signals and con-
cealing or invalidating of the relation between the emis-
sions hypotheses made by the attacker and the emission
values measured from the device (?).

Known techniques to achieve a reduction of the signal
strength either shrink the etching technology employed
to build the chip or redesign the circuit layout to re-
duce the amount of leaked information via coupling ef-
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fects (???). Another measure is to add an extra metal
layer on the top of the chip or a grid of live wires, but
this significantly raises production costs and does not
suppress completely the emissions. To further reduce the
effectiveness of the measurements, it is possible to add
photosensitive circuitry to the halt the chip if its casing
is removed through a decapsulation process, thus forc-
ing the attacker to acquire the data on a packaged chip.
In principle, all of these countermeasures will reduce the
information leakage via the EM side-channel, thus in-
creasing the amount of measurements to be performed
to lead a successful attack up to an practically unfeasi-
ble or non-economically advantageous point, at the cost
of an increased unitary price per chip. It is common to
assume that even devices equipped with anti-tampering
solutions can be vulnerable to EM analysis threats, if
the adversary is able to collect an infinite amount of EM
measurements and has access to sufficient computational
power. To prevent such a powerful attacker from suc-
ceeding additional techniques rely on the randomization
of the circuit clock and/or secret key refreshing. The for-
mer ones aim at de-synchronizing the measured signals
in such a way to raise the technical effort needed to lead
an attack, since time alignment is a crucial factor for the
success. The latter ones are performed with “key usage”
counters pointing out when a re-keying is needed, limit-
ing the number of measurements an attacker will be able
to collect.

3.1 Software EM Countermeasures

Software countermeasures aim at either spreading the
information leakage on the time axis (known as hid-
ing schemes) or preventing the attacker from knowing
the actual input value employed in the sensitive oper-
ations via random masking values (known as masking
schemes) (??). Although this comes with a performance
penalty, software countermeasures are of prime interest
due to their low cost and the usual lack of tight through-
put constraints on microcontrollers.

The simplest way to diffuse the leakage over the time
axis is to insert random delays in the execution of the
cipher. The entity of the delay is picked within a limited
range of clock cycles, to prevent excessive performance
penalties: the effect on the measured emissions is a mis-
alignment in the time instant where the sensitive oper-
ation takes place. Since adding random delays impacts
substantially on performances, an alternate strategy is to
reschedule in a random order a set of operations without
any mutual data dependencies. The typical case is the
one of memory lookups performed on a cipher’s S-Box,
or the addition of the round-subkey to different portions
of the state. This technique, commonly known as shuf-
fling, achieves the same effect of inserting random delays
, as the operation being attacked is executed in different
time instants. The performance penalty of this technique
can be limited implementing the shuffling of the look-
ups through introducing an indirect indexing of the ta-
ble via a temporary array. Both the insertion of random

delays and the rescheduling increase the amount of mea-
surements which should be performed by the attacker
to obtain a statistically significant correlation between
the measured emissions and the key-dependent model.
Considering that the operation under attack can be per-
formed within a window of n instructions, and assuming
that the power consumption of the other operations is
independent from the one under attack, the resulting cor-
relation value for the time instant where the protected
target operation is performed, will be reduced to one n-th
of the one of an unprotected implementation. It is pos-
sible for the attacker to reduce the protection factor of
these countermeasures up to

√
n through pre-computing

a sliding window sum of the measured values over a n in-
structions wide time window and subsequently applying
the usual correlation attack methodology. In this case,
one of the windows will always contain the attacked in-
struction, thus the sum of its measurements will always
be correlated with the prediction, although it will be
affected by a stronger random noise (leading to a corre-
lation coefficient reduction by

√
n) (?).

The other approach to software countermeasures in-
volves the use of random masks to hide the actual values
being computed in the cipher from an attacker. The core
idea is to protect the sensitive operation through apply-
ing one or more random masks to its inputs and remove
them once the operation has been performed. The most
typical case is the masking of the round key additions,
performed via an xor operation, in block ciphers. In this
case, a random masking value is added via xor to both
the cipher state and the round key, subsequently the
combination of the two results, again via xor, removes
the masks and perform the correct key addition. The at-
tacker will not be able to perform a correlation analysis
due to both the fact that he no longer knows the input
values of the actual key addition operation and he can-
not deduce the value of the mask as it changes at each
run.

4 Secure Block Cipher Implementation

This section provides a precise evaluation of the compu-
tational effort which should be carried out by an attacker
to breach the security of a protected software implemen-
tation and reports our countermeasure scheme.

4.1 Security Evaluation of Protected SW
Implementations

To lead a successful attack against a masking-protected
cipher the attacker needs to know all the power consump-
tion values of the operations involved in the masking
procedure and must find a combination of them which is
independent from the value of the random mask. This at-
tack strategy, known as “high-order correlation attack”
(HO-CA) (where the term “order” refers to the number
of masks m) (?) needs to guess the time instants when
the aforementioned operations are performed. HO-CAs
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Figure 1 Computational cost (y-axis in base-2
logarithmic scale) to recover the whole key of a
m-masked implementation of AES-128:
(4·ntr·l·28· 128

8
)=(16384·ntr·l), with

ntr∈{100, 500, 1000, 5000} and l=d2.5·(2m+ 1)e

derive a mask-independent value exploiting 2m + 1 mea-
sured values and combining them according to a chosen
recombination function, and correlate it with the hy-
pothetical values derived from the emission models. As
the attacker does not know when the 2m + 1 operations
are performed during the l samples long measurement,
he needs to compute

(
l

2m+1

)
possible outputs of the re-

combination function. As a correlation analysis must be
conducted for each of the aforementioned choices, the
computational effort will increase by a factor of

(
l

2m+1

)
.

Willing to provide a quantitative evaluation of the
level of computational security against side channel at-
tacks, we examine the amount of computations needed
to perform a single correlation attack as a function of
the number of measurements ntr, and their length in
samples l.We recall that, in case hiding schemes are in
use, the number of traces will raise by a factor pro-
portional to the square root of the delays introduced.
Willing to consider the best case for an attacker we
will dimension the security margin of our solution with-
out the effect of the hiding. Assuming that the attacker
is able to sample only the sensitive operations at 2.5
times the clock frequency of the device (to provide a
safe margin above Nyquist’s limit), he will obtain 2.5
samples per clock cycle (i.e. per instruction). Thus the
effective length of a measurement for a m-mask imple-
mentation will be of l=d2.5·(2m + 1)e samples. Since
the attacker will not need to recompute the hypothe-
ses on the emission model for each of the correlation
attacks to be led, the computational cost amounts to
(4·ntr·l·num of key hypotheses·portions of the key).
Figure 1 shows computational complexity (in terms
of the number of arithmetic operations), in base-2-
logarithmic scale, of an attack against a m-masked
implementation of the AES-128, employing a 8-bit key
hypothesis, varying the number of masks from one to
twelve. The four curves show the amount of compu-
tation assuming ntr∈{100, 500, 1000, 5000}. From the
figure it can be seen that, to obtain a computational
complexity of 280 for an attacker, 10 masks are required.

4.2 Proposed Design

Although masking techniques provide a quantifiable se-
curity margin, they suffer from the drawback of being
computationally expensive when applied to nonlinear
functions: open literature reports decreases in perfor-
mance as high as 40× for a 4th-order masking on the
AES S-box lookups (?). Since these operations are the
most sensitive to EM-leakage, as the memory bus wires
are particularly long and run parallel one to each other,
the designer is forced to trade off a significant amount of
performances to obtain a reasonable security margin.

We propose an alternative to the masking of the non-
linear functions which grants perfect protection under
the presented EM emission model.

Proposition 4.1: Assuming a Hamming Weight
model for close range emissions, to protect the memory
transfer operations of a software cipher implementation
from EM based correlation attacks any key-driven mem-
ory access operation must assert on the memory buses
only constant Hamming Weight values. To this end, an
n-bit wide bus is employed to carry only n

2 bits of ac-
tual information, while the remaining bits must be set
so that the total Hamming Weight is fixed to n

2 .

Proposed Scheme As it is usual for block ciphers to
perform key-driven lookups of nonlinear functions tabu-
lated in memory, an efficient way to meet the aforemen-
tioned requirements is to store the table values split into
n
2 -bit wide shares interleaved with n

2 -bit wide compen-
sation values. A choice for the compensation values to
be employed is the bitwise negation of the share to be
stored, as it always holds that HW (concat(s,¬s)) = n

2 .

The proposed scheme requires that two operations
on the memory should be performed where the original
cipher performed only one. This yields a worst-case per-
formance penalty of 2×, which is far smaller than the one
imposed by a masking scheme of order greater than 3.
The doubling in size of the lookup tables of the cipher is
not particularly taxing as the original size of the lookup
tables is rather small (0.25 kiB–4 kiB) with respect to
the current permanent memory sizes for microcontrollers
(64 kiB–512 kiB). Note that the reconstruction of the ac-
tual value from the two shares must be performed in the
CPU registers: this in turn implies that particular care
must be exercised in order to prevent the compiler from
spilling the values against the designer’s will.

It is thus possible to design an EM-analysis protected
block cipher implementation combining this technique
and a high order masking of the round-key additions.
This scheme allows the designer to obtain significant per-
formance improvements over a pure masking-based im-
plementation, while retaining the same security margin.
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5 Case Study: AES encryption primitive

The most widespread block cipher implemented on mi-
crocontrollers is the AES, due to its standardization and
the wide availability of efficient implementations. More-
over, its structure is a good representative of a large
family of ciphers, thus making it a good candidate for a
case study. The encryption primitive executes a number
of round transformations on the input plaintext, where
the output of each round is the input to the next one.
The number of rounds r is determined by the key length:
a 128-bit key uses 10 rounds, a 192-bit key uses 12 and
a 256-bit key uses 14 (?). Each round is composed of
the same steps, except for the first where an extra ad-
dition of a round key is inserted, and the last where the
MixColumn operation is skipped. Each step operates
on 16 bytes of data (referred to as the internal state of
the cipher) generally viewed as a 4×4 matrix of bytes
or an array of four 32-bit words, where each word cor-
responds to a column of the state table. The four round
stages are: AddRoundKey (xor addition of a sched-
uled round subkey), SubByte (byte substitution by a
lookup table (S-box)), ShiftRow (cyclical shifting of
bytes), and MixColumn (linear transformation which
mixes column state data). Given the cipher key k, the
KeySchedule procedure outputs r+1 (16 byte wide)
round subkeys.

The encryption procedure is amenable to several soft-
ware implementations which trade-off memory and com-
putational resources to obtain the best performance for
the given architecture.

The SubByte operation is defined as the multiplica-
tive inverse in the Galois field F28 , followed by a con-
stant affine transformation. The inverse of a 8-bit el-
ement a∈F28 is usually computed through either the
extended Euclidean algorithm or a repeated “square
& multiply” procedure to the following exponentiation:
a−1=a254∈F28 . The computational demands of a finite
field inverse calculation make the fully computational
implementation of the SubByte step inconvenient. The
usual choice is to employ a pre-computed table (S-box)
for all possible outputs of this step, thus implementing
the operation through a simple table lookup.

Trading-off memory space vs. timing a little bit fur-
ther, it is quite common to combine the SubByte,
ShiftRow and MixColumn steps into a single set of ta-
bles lookups (?). Let us denote with ai, j , i, j∈{0, 1, 2, 3}
the generic 8-bit element of the state matrix A[ai,j ], with
S[0, . . . , 255] the 256 bytes of the S-box table and with
◦ a F28 finite field multiplication (?). Let T0, T1, T2 and
T3 be four lookup tables, each viewed as a sequence of
256 32-bit words indexed by a byte value a.

T0[a] = [ S[a] ◦ 02; S[a]; S[a]; S[a] ◦ 03 ]

T1[a] = [ S[a] ◦ 03; S[a] ◦ 02; S[a]; S[a] ]

T2[a] = [ S[a]; S[a] ◦ 03; S[a] ◦ 02; S[a] ]

T3[a] = [ S[a]; S[a]; S[a] ◦ 03; S[a] ◦ 02 ]

These tables are used to compute the round opera-
tions as described by the following equation, where
kj is the j-th word of a given round subkey and
Aj=〈a0,j , a1,j , a2,j , a3,j〉 is the j-th column of the state
table considered as a single 32-bit word (with the sim-
plified notation: Aj = Aj mod 4, ai,j = ai, j mod 4):

Aj = T0[a0,j ]⊕ T1[a1,j−1]⊕ T2[a2,j−2]⊕ T3[a3,j−3]⊕ kj

The four tables T0, T1, T2 and T3 (called T-tables from
now on) trade-off a larger memory requirement for a sig-
nificant speedup in terms of computation time of the
cipher. They use 4 KiB of storage space and their main
goal is to avoid performing the MixColumn transforma-
tion as this operation, in the original definition of Rijdael
algorithm, performs Galois Field multiplications by fixed
constants which map poorly to general-purpose CPUs in
terms of performance.

Since the T -tables may be derived also through
rotating each word of T0 by i bytes, Ti[a] =
RotByte(T0[a], i), i ∈ {0, . . . , 3}, to reduce the active
memory footprint used within each round, every column
of the state table may also be computed as:

Aj = T0[a0,j ]⊕RotByte(T0[a1,j−1], 1)⊕

⊕RotByte(T0[a2,j−2], 2)⊕RotByte(T0[a3,j−3], 3)⊕ kj

This single T -table variation reduces the lookup tables
to a single 1 KiB one, while incurring a penalty of only
three extra rotations per column per round with respect
to the four T -tables implementation.

Finally, a further possibility to implement the Sub-
Byte step would be implementing an algorithm faster
than the fully computational S-Box, without falling back
to a pre-computed table. Canright investigated the defi-
nition of a very compact AES S-Box particularly suited
for hardware implementations (?) which is also inter-
esting for SW implementations that must be secured
against side-channel attacks (like the EM-based ones)
that exploits the information leakage of memory trans-
fer operations. In a nutshell, Canright’s contribution is
based on a linear mapping for changing the representa-
tion base of elements in the Galois field F28

∼= F((22)2)2

in such a way to perform the finite field inversion as a
composition of operations in smaller (and more efficient)
fields F24 and F22 .

6 Experimental Results

6.1 Target Evaluation platform

The target platform is the STM32F4 Discovery board,
a commercial grade development board based on the
STM32F407VG Microcontroller (?). The microcontroller
is based on the Cortex-M4 architecture from ARM and is
endowed with 1 MiB Flash memory, and 128 kiB SRAM
as well as a number of peripherals. During the mea-
surements the microcontroller was clocked at the maxi-
mum frequency available (168 MHz) and the secret keys
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(c) Protected memory
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(d) Protected computation

Figure 2 Results of the attack on the 4 T -tables implementation. Figure 2(a) reports a successful attack on memory
operations with 680 traces, while Figure 2(b) shows an attack to the computation of the first AddRoundKey with
6800 traces

were stored in its Flash memory, locked against readout
through soft fuses. The measurements were gathered em-
ploying an Agilent DSO1012A digital oscilloscope sam-
pling at 500 Msamples/s the voltage drop at the ends of
the probe, using a vertical resolution of 5 mV/division
of the 8-bit analogue to digital converter. A commodity
probe was obtained out of a common 50 Ω coaxial ca-
ble, endowed with a BNC connector on one end for the
connection to the oscilloscope channel. An 8-mm wide,
two turns, copper wire coil was soldered on the opposite
end of the coaxial cable and the coil was placed horizon-
tally on top of the microcontroller. No amplification was
needed as the measured signal consistently filled more
than half of the vertical scale of the oscilloscope. Ten
thousand traces for each AES implementation were ac-
quired and stored on a support PC connected to the
oscilloscope via USB. The time required to collect the
traces is around two hours per batch of measurements.
A triggering signal was generated internally by the mi-
crocontroller to ensure proper alignment of the traces.
As a baseline reference, measurements were taken for the
standard implementation of AES based on S-Box, the
one present in PolarSSL (?), which employs four T -tables
and an adaptation of it which uses only one T -table and
bytewise rotations.

6.2 Experimental Evaluation

As a first result of the experimental evaluation, the
evidence that the proposed scheme effectively hinders

correlation attacks on the EM emissions of the cho-
sen platform is provided. Figure 2 depicts the results
of four attacks lead against the 4 T -tables implementa-
tion of the cipher, against both an unprotected (Sub-
figures 2(a) and 2(b)) and a protected implementa-
tion (Subfigures 2(c) and 2(d)) employing the proposed
scheme (the employed masking is a 10-th order mask).
The attacked operations were the first T -table look-up
performed by the algorithm and a byte of the first Ad-
dRoundKey primitive respectively, considering an 8-
bit key guess. The correlation metric used to determine
which key guess is the correct one is Pearson’s correla-
tion coefficient, as since this is a well established method
in open literature (?). As shown in the figures, the at-
tacker is able to obtain a statistically sound3 estimate of
which key guess yields a correct emission model for the
protected implementation, for both the T -tables lookups
and the round key additions, albeit in our case the com-
putational operation requires one order of magnitude
more measures than the memory one. In both the pro-
tected cases the attacker is no longer able to obtain a
statistically sound estimate as the confidence intervals
for the correct key guess and the second best guess are
always overlapping.

After ascertaining the effectiveness of the counter-
measure, a comparison of the performances of the im-
plementations of the AES is provided. Table 1 reports
the execution times and memory footprints of both the
protected and unprotected implementations. The first
section of the table reports the unprotected implemen-
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Table 1 Timing and memory fingerprints for the different implementations. The greyed out entry points to the best
implementation for the target architecture

Tables Total
Implementation Time Size Code Size

[µs] [kiB] [kiB]

S-box 57.2 0.25 2.45
One T -table 15.7 1 3.19
Four T -table 16.9 4 3.21

Compact S-box 708.0 0.03 4.53
Fully Computational S-box 1160.0 0 3.48
S-box compensated 64.4 0.5 2.84
S-box masked and compensated 159.0 0.5 2.85

One T -table compensated 34.3 2 4.92
One T -table masked+compensated 59.8 2 7.16
Four T -table compensated 36.2 8 5.19
Four T -table masked+compensated 59.6 8 9.00

tations, while the second reports the possible protection
schemes for an S-Box based implementation. It is worth
noting that suppressing completely the memory oper-
ations either by implementing the S-box through pure
computation or through a partial computation over F24

incurs in performance penalties in the 12×-20× range
and yields a net increase in the occupation of the perma-
nent memory of the device, since the savings due to the
elimination of the tabulated S-box are compensated by
a higher increment in the code size, and does not provide
protection against attacks on the computation. By con-
trast, the compensated S box implementation reports
small performance penalties with respect to the unpro-
tected one, which allow to obtain a 2.7× performance hit
when employed in the proposed scheme. The third sec-
tion of the table reports the results for the protected im-
plementations employing T -tables: among these, of par-
ticular interest is the one employing the proposed protec-
tion scheme and a single T -table. This implementation
has a 4% performance penalty with respect to the unpro-
tected one based on a plain S-box (a 3.8× penalty with
respect to the corresponding unprotected implementa-
tion), but it is fully protected against close range EM
emissions analysis. This comes at a net increase of 4.71
kiB in the code size, which is less than 1% of the avail-
able permanent storage on our target platform. We also
note that a 4 T -tables implementation does not yield
any performance improvements due to a feature of the
ARM architecture: ARM CPUs are endowed with a bar-
rel shifter which is able to perform bitwise shifts and ro-
tation on one of the operands of any arithmetical/logical
instructions with no overhead. The overhead of perform-
ing the rotations on the values of the single T -table are
reduced to zero, thus eliminating the need to employ 4
T -tables.

7 Related Work

Open literature on EM side channel attacks reports a
number of attacks conducted on a wide range of devices.
In particular, in (??), the authors demonstrate the via-
bility of electromagnetic attacks (EMA) on an 8-bit pro-
cessor running at 4 MHz in a smart-card, while in (?)
the authors show that recording the emission traces over
a particular spot of an FPGA programmed with an im-
plementation of the AES block cipher. In (?) the authors
target an even more complex device (a PDA) support-
ing mobile code applications running AES and elliptic
curve cryptography. However, to the best of the author’s
knowledge, no software countermeasure scheme explic-
itly tailored for the EM side channel has been proposed
in open literature. Nonetheless a relevant reference on
masking schemes is (?), where the authors examine the
performance and memory overheads of masking a full ex-
ecution of the AES with up to 4 masks. With respect to
the results presented in (?) we achieve a 10× reduction of
the overhead in timing, and we raise the best case com-
putational effort for the attacker from 250 to 280, oper-
ations, thus rendering computationally unfeasible high-
order correlation attacks. In (??), the authors demon-
strate the viability of electromagnetic attacks (EMA) on
an 8-bit processor running at 4 MHz in a smart-card,
whilst in (?) the authors target a more complex device (a
PDA) supporting mobile code applications running AES
and elliptic curve cryptography.

8 Conclusions

The security and cost envelope requirements in
microcontroller-based systems require efficient and cost
effective countermeasures against side channel attacks.
Since the power consumption side-channel can be tack-
led with cheap on-die solutions (?), the proposed coun-
termeasure and security evaluation analysis against EM-
base side-channels effectively improves the current state-
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of-the-art achieving a tenfold performance improvement
and an increase in the security margin by a factor of 230

over previous solutions.

References

Agosta, G., Barenghi, A., and Pelosi, G. (2012). A code
morphing methodology to automate power analysis
countermeasures. In Groeneveld, P., Sciuto, D., and
Hassoun, S., editors, DAC, pages 77–82. ACM.

Agrawal, D., Archambeault, B., Rao, J. R., and Rohatgi,
P. (2002). The EM Side-Channel(s). In Jr., B. S. K.,
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Note

1ISO/IEC standard 29192-2:2012 - Information technology
– Security techniques – Lightweight cryptography – Part 2:
Block ciphers

2ETSI TS 135 202 V10.0.0 (2011-04) - UMTS LTE - Specifi-
cation of the 3GPP confidentiality and integrity algorithms
- Document 2: Kasumi specification

3Confidence intervals with a confidence level γ = 99% for the
sample correlation coefficients are plotted on the figures


