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Abstract—A novel fault attack against ECDSA is proposed
in this work. It allows to retrieve the secret signing key, by
means of injecting faults during the computation of the signature
primitive. The proposed method relies on faults injected during a
multiplication employed to perform the signature recombination
at the end of the ECDSA signing algorithm. Exploiting the faulty
signatures, it is possible to reduce the size of the group of the
discrete logarithm problem warranting the security margin up
to a point where it is computationally treatable. The amount of
faulty signatures requested to perform the attack is relatively
small, ranging from 4 to a few tenths. The key retrieval can
be applied to any key length, like those standardised by NIST,
including the ones mandated for top secret documents by NSA
suite B. The required post processing of the obtained faulty values
is practical on a common consumer grade desktop.

The procedure does not rely on any particular structure of
the employed curve and may easily be extended to the regular
DSA based on modular arithmetics.

I. INTRODUCTION

The need to provide a sound and secure way to warrant the

authenticity of digital contents is nowadays a growing require-
ment for modern computing systems. This need is fulfilled

by cryptographic digital signature protocols. Among them,
the most innovative and standardised cryptosystem able to

provide a signature scheme for digital contents is represented

by the Elliptic Curve Digital Signature Algorithm (ECDSA),
which has been standardised by both NIST [1] and IEEE.

In particular, thanks to the high security warranties, it has

also been recommended to sign top secret information in the
NSA Suite B. The ECDSA cryptosystem is composed of two

primitives: a signing and a signature verification algorithm.

The signing algorithm is able to produce an authenticated
token, the digital signature, employing a secret value known

only to the signer, while the signature verification algorithm

checks for the authenticity of the signature, employing only
publicly known values. The retrieval of the secret key by an

attacker allows him to forge valid signatures at will, thus
voiding any authenticity warranty provided by the scheme.

Therefore, the security margin of the ECDSA cryptosystem

relies on the difficulty of deriving the secret value relying
only on the knowledge of the publicly available parameters

and the digital signature. In a scenario where the devices

performing the signature may be seized by an attacker, it
is important that the secret needed in order to build correct

signatures cannot be extracted from the device holding it. A

common practical scenario for an attack is represented by an
attacker gaining access to a signing token containing the secret

key, such as a smart card, and willing to duplicate it, before

returning the original one to the legitimate owner. The open
literature provides few examples of a secret key retrieval at-

tacks. The authors of [2] rely on both a particular arithmetical

representation of the values involved in the algorithm and the
possibility of inducing single bit faults in a specific bit of a

single value with a rather strict time accuracy. In [3] an attack

is presented relying on a fault on the modulus used for the
computations, but needs a few thousands faulty results to be

successful against a system employing a small-sized curve.
Eventually, in [4] an instruction skip fault is used to recover

some bits of the nonce used during the signature. A few tenths

of faulty results are again sufficient for a small-sized curve.
This work will present a fault based attack able to retrieve

the full secret key, for all the standardised lengths, through
the injection of a single bit fault, without any restriction on

the specific position of the bit in the word. The attack is

practically viable for all the real-world word lengths of the
target architecture. The remainder of this work is organized

as follows: Section II provides the mathematical background
on elliptic curve cryptography and the fault model assumed

by our attack, Section III describes the new attack technique

in detail and IV provides an analysis of the practical means
needed to carry out the attack. Finally, Section V summarises

our contribution.

II. MATHEMATICAL BACKGROUND AND FAULT MODEL

A. Preliminaries on Elliptic Curves

The domain of operation of the ECDSA algorithm is the

set of integers modulo p denoted usually as Zp. For the sake

of clarity, in the remainder of the paper the mod p notation
will be omitted and the modular reductions will be implicitly

assumed for all the coordinates of the points of the curve. The

key mathematical object employed to build a computationally
hard problem in the ECDSA cryptosystem is a particular

algebraic group employing as a support the points of an elliptic
curve defined over Zp. Given a field (Zp,+, ·), where p is a

large prime number, an elliptic curve E is represented by the

set of points with coordinates over Zp×Zp where the following
relation holds:

y2 = x3 + a4x+ a6,

and it is denoted either as E[Zp] or, simply as E. The set of

points E is used as a support for a commutative group (E,+),
where the + operator denotes the so-called point addition

operation. The point addition operation between two points

of the curve P = (xP , yP ) and Q = (xQ, yQ) is suitably
defined to be an associative and commutative operation. The

identity element of the operation is a particular point, known

as point at infinity denoted as O, while the inverse of the point
P = (xP , yP ) is defined as −P = (xP ,−yP ). The order n
of the group (E,+) lies within the bounds stated by Hasse’s
theorem [5], i.e.:

p+ 1− 2
√
p ≤ n ≤ p+ 1 + 2

√
p. (1)

We remark that, for all the curves over Zp standardized by
NIST, n is prime. Since the group (E,+) is cyclic, a point
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G of maximum order is selected as the default generator

and standardized together with the other curve parameters for

protocols definitions.
In order to construct the one-way function which will be

exploited in order to build the ECDSA cryptosystem, the

group law is used to build an external operation, called scalar

multiplication.

Given an integer k ∈ Z, and a point P ∈ E the scalar

multiplication operation is defined as

[k]P = P + P + . . .+ P︸ ︷︷ ︸
k times

.

i.e. as the iterated sum of a point. The result of [0]P is defined
as O, and it follows from the definition of the operation that

[−k]P = −[k]P . It is thus possible to regard the group (E,+)
where the curve has prime order n as isomorphic to (Zn,+)
through the map k ↔ [k]P . The operation on the elliptic

curve employed as a trapdoor function is the aforementioned

point scalar multiplication. It is in fact possible to compute
efficiently the scalar multiplication operation through the use

of a double and add strategy [6], which has a complexity of

O(log(k)) point additions. On the other hand, given a point
Q ∈ E and a generator of the additive group over the curve

P , it is computationally hard to find the value of k such that
[k]P = Q. This problem is known in open literature as the

Elliptic Curve Discrete Logarithm Problem (ECDLP) and the

best algorithms known at present time belong to the O(n)
complexity class (with n the order of the curve).

The ECDSA suite relies on the hardness of the ECDLP

problem in order to produce a signature token from a secret
value k, which represents an ephemeral key held only during

the signature procedure duration. This protocol for digital

signatures is derived from the classic DSA [1], through sub-
stituting the discrete logarithm problem over a number field

with the one constructed over the (E,+) curve points group.

The signing algorithm of ECDSA is described in Algorithm 1.

Algorithm 1 ECDSA Signature Generation

Input: curve parameters (E, G), private key d, message m
Output: signature S
1: e← hash(m)
2: k ← random ∈ [1, n− 1]
3: P ← [k]G
4: r ← xP mod n
5: s← (e + rd)/k mod n
6: return S = (r, s)

In particular, the signature generation algorithm (Algo-

rithm 1) produces the signature token S, taking as input the

definition of the group (E,+) together with a default generator
G ∈ E, the private key parameter k ∈ Zp and the message

of which authenticity must be warranted m. In order to build

the signature, the algorithm at first obtains a hashed version
e of the message m (Line 1) and a non zero random number

(Line 2), smaller than the order of the curve. Subsequently, the

point scalar multiplication between the random number and
the generator G is performed (Line 4) and the x coordinate

of the resulting point is divided by the order of the curve

n and stored in r. In case r = 0 the procedure is re-run
with a different random number until a non-zero r is obtained.

Finally the signature is computed through combining together

the hash of the message, the value obtained through the point

scalar multiplication and the extracted random k (Line 5).
The signature token S is represented by the pair (r, s). It

is particularly important to choose a cryptographically strong

random number for k and never reuse it: it is trival in fact to
extract the value of the secret key d if two different signatures

are computed with the same random k.
In order to check if an ECDSA signature is valid, the verifier

is provided with the public key Y = [d]G, where the secret

value d is protected by the computational hardness of the

ECDLP. The verifier proceeds to compute the message hash
e and compares the received r value with [e/s]G+ [r/s]Y . If

the two quantities match, the provided signature is valid.

In order to attack this scheme this paper will be considering

a single bit flip fault model. The fault is assumed to be
transient and to be hitting a single multiplication as detailed in

the next section. The required fault model can be practically
realised either with cheap equipment through tampering with

either the supply voltage of the device, as reported in [7],

or through the proper employment of a laser fault injection
station, which allows a greater precision in the injection,

depending on the targeted device [8]. Both these methods have

been shown to be widely practical and are recognised as a
realistic fault injection methodology.

III. ATTACKING TECHNIQUE DETAILS

In this section we present the details of the attack devel-

opment. Starting from the analysis of the computation that

is carried out in faulty conditions, we develop a method to
recover information on some internal data that is not supposed

to be known outside the device. Namely, after the analysis of
one faulty result it will be possible to come to know one of the

words of either the key d or the intermediate value h = e+rd.
A collection of some of these values, coming from different
faulty results, will then be used to reconstruct the whole secret

key d.
We will, at first, analyse the propagation of the error caused

by the fault to the final signature result, and show a fast method
to recover secret data from the analysis of one single signature.

We will subsequently deal with possible issues which arise

from the fact that the actual fault position might be unknown.
Finally, we will show how to recombine the results obtained

from the analysis of different signatures to obtain the whole
secret key d.

A. Error Propagation

We analyse in this section the error propagation during
the signature computation, so as to derive an expression for

the final faulty signature. The two modular multiplications

in the signature recombination (Algorithm 1, Line 5) are
usually performed in the most straightforward way: an integer

multiplication is followed by a modular reduction step. We

will now focus on the integer multiplication step, showing
later that the modular reduction does not influence the results

we obtain. Multiple precision integer multiplication may be

implemented in a number of ways: we choose to tackle
the operand scanning method since it is widely used and it

has been adopted as the method of choice in the OpenSSL

Toolkit.Nonetheless the results do not change when different
multiplication algorithms are used. Algorithm 2 reports the
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Algorithm 2 Operand Scanning Integer Multiplication

Input: a = (aσ−1 · · · a1a0)2w
b = (bσ−1 · · · b1b0)2w

Output: c = a · b = (c2σ−2 · · · c1c0)2w
1: ci ← 0 ∀i ∈ [0, 2σ − 2]
2: for i in 0 to σ − 1 do

3: u← 0
4: for j in 0 to σ − 1 do

5: (u, v)2w ← ci+j + ajbi + u
6: ci+j ← v
7: end for

8: ci+σ ← u
9: end for

10: return c

operand scanning multiplication algorithm for an architecture

with w-bit wide words.We will denote with σ the number of

architectural words needed to represent a multiple precision
number.

The algorithm is basically formed by two nested loops
during which each pair of words of the operands are multiplied

and the result is added to a partial product. It can be noted
that Line 5 is the only one actually performing a computation,

taking in input only two input words at a time. We assume that

the single bit transient fault described in Section II alters one
of the two words during an iteration of the operand scanning

loop. For the sake of clarity, we will denote the iteration hit

by the fault through its pair of loop indexes (̂ı, ̂).
In other words, the device will compute the partial product

employing the value ã̂ in place of a̂ where the two values
satisfy ã̂ = a̂ ⊕ 2µ where µ is smaller than the word length

w. The difference between the correct and faulty value may

also be seen arithmetically as ã̂ = a̂ ± 2µ, in order to
elaborate the difference between the correct and faulty result

of the multiplication. The error induced in the partial product
(u, v)2w may be quantified as:

(̃u, v)2w = cı̂+̂ + ã̂bı̂ + u

= cı̂+̂ + (a̂ ± 2µ)bı̂ + u

= cı̂+̂ + a̂bı̂ ± 2µbı̂ + u

= (u, v)2w ± 2µbı̂

(2)

Propagating the effect of the additive fault in the partial

product up to the final result, taking care of assigning the
proper weight to the faulty word we obtain:

c̃ = c± bı̂2
µ2(ı̂+̂)w

= c± bı̂2
µ+(ı̂+̂)w.

(3)

As represented in the equation, the additive error on the

result depends only on a w-bit word bı̂ of an operand and the
position µ where the fault did happen. As stated previously, it

can be seen from the previous equation that this error is not

disturbed by a modular reduction step following the integer
multiplication, since the operations work over the same finite

field (Z,+, ·) as the modular multiplication.

We will now consider the multiplications performed by

the signature generation algorithm in order to compose the

signature. In particular, when the signature is actually com-
posed combining the message and the secret key (Algorithm 1,

Line 5) two modular multiplications are performed: namely,

the ones yielding rd and (e + rd)k−1. We will analyse the

information leaked from the fault injection in both of them.

Taking into consideration the first multiplication, assume the
value r is the one affected by a fault. For (3), the result of the

operation, according to the previous derivations, can thus be

expressed as

r̃d = rd± dı̂2
µ+(ı̂+̂)w (4)

Notice that in this case, the additional term depends directly
on a word of the secret key d, shifted by a factor dependent on

where and when the fault altered the computation. Employing

the faulty value of rd in the subsequent signature recombina-
tion steps, we obtain a faulty value for s, s̃, satisfying

s̃ = (e+ r̃d)k−1

=
(
e+ rd ± dı̂2

µ+(ı̂+̂)w
)
k−1,

and, through distributing the multiplication by k−1,

s̃ = s± dı̂2
µ+(ı̂+̂)wk−1. (5)

It can be seen that the value of the faulty signature differs from

the correct one by a value directly depending on the secret key.

When the fault alters the value of a word of d instead of r
during the multiplication, thus causing a leakage of a word

of r, it is possible for the attacker to check if the recovered

word is correct, through comparing it to the words composing
r. Moreover, since r changes at each execution, it is unlikely

that a word of the secret key d and a word of r match for
more than one computation.

We will now consider the second multiplication, i.e. s =
(e + rd)k−1 as the one affected by the fault, denoting h =
e+ rd for readability, a fault on k−1 yields the result

s̃ = s± hı̂2
µ+(ı̂+̂)w. (6)

In this case the final result carries information about h =
e+ rd, which is related to the secret key and two other values

known to the attacker. Again, if the variable hit by the fault is
h in place of k−1 the result is different and it will be necessary

to set the result apart.

We would like to remark that, if the non-fault affected

word of any partial product is equal to zero, the effect of the
injected fault will be nullified and there will be no difference

in the outputs. However, this case is particularly rare and it’s

sufficient to repeat the fault injection since the random salt
will be avoiding the repetition of such cases.

B. Discrete Logarithm

We will now present the method to recover the value of the
words dı̂ or hı̂ relying on the faulty signature s̃.
The most simple method which can be used in case the

difference from the correct signature depends on hı̂ (Equa-

tion 6), is to try all the possible values of hı̂ and (̂ı, ̂, µ).
The correctness of the guess on the value of hı̂ may be

checked verifying the corrected signature s̃± hı̂2
µ+(ı̂+̂)w: if

the corrected signature passes the verification stage, the correct
guess is detected. However, this procedure is particularly com-

putationally intensive and will not work if the error depends

on both dı̂ and k
−1 (Equation 5), since the possible hypotheses

for the value of k are too many to allow an exhaustive search.
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Being the size of k the same as the secret key d, this would

imply a computational effort equivalent to find the key through

a brute-force attack.
In order to devise a less computationally intensive and

universally working recovery strategy, some preliminary con-

siderations must be made. First of all, although the point [k]G
calculated in algorithm 1 is not known outside the device, it is

possible to make hypotheses on its coordinates since the value

r = x[k]G mod n is publicly known. It is indeed possible to
state the following

Statement 1. Let r be the x coordinate of an unknown point

P ∈ E, reduced modulo ord(E) = n. Given a value of r, there
are only either two or four points belonging to the curve such

that r = xP mod n

Proof: The coordinate xP is an element of the base field

Zp, implying that 0 ≤ xP < p. We may express the modular
reduction r has undergone as xP mod n = xP −λn,for some

non-negative integer λ. We will now prove that either λ = 0
or λ = 1, that is, for a single reduced value r = xP mod n
there are only two possible values of xP . We recall that the

value of the curve order n is bound by Hasse’s theorem (1) to

be p+1− 2
√
p ≤ n ≤ p+1+2

√
p. We may thus distinguish

three cases, depending on whether n is bigger or smaller than

p. The case n = p is not encountered in practice, since elliptic

curves with such a property are provably cryptographically
weak [9]. If n > p holds, then there is no reduction going

on (i.e. λ = 0) since xP is smaller than p. If n < p holds,

a the value of the x coordinate lies in one of the following
intervals: [1, n− 1] or [n, p− 1]. If the coordinate lies in the

first interval, the reduction is not performed, i.e. r = xP . In
the second case, it must be noted that from Hasse’s Theorem,

it follows that n ≥ p+1−2√p. Since p+1−2√p > p/2 holds
for every prime p, the modulus n will also be greater than p/2,
consequently p < 2n. This in turn implies that xP is smaller

than 2n, thus the reduction modulo n will at most subtract

n (i.e. λ = 1 at most). It has been shown that the modular
reduction of the coordinate x[k]G leads to r = xP − λn for

λ ∈ {0, 1} only. It is thus possible to obtain at most two valid

x coordinates given a value of r, depending on the fact that
the modular reduction did actually subtract something or not.

Substituting the two possible values for xP in the Weierstrass

equation (II-A) describing the curve, each of the given xP may
correspond to either 0 or 2 points, depending on whether or not
the value x3+a4x+a6 is a quadratic residue modulus p. Since
r is correctly derived from an actual scalar multiplication P
performed by the algorithm, either r or r + n must yield a

quadratic residue, and two points P = (xP , yP ) and −P =
(xP ,−yP ) will be bound to the value. The number of points

which can be bound to a generic x coordinate reduced modulo

n is thus 2 or 4.
This result implies that it is possible for an attacker to derive

a very small number of hypotheses on the value of the point

P = [k]G obtained as a result of the point scalar multiplication
of the ECDSA signature algorithm, since the value of the

reduced x coordinate is sent along in the signature token.
We will now elaborate the faulty signature equations ob-

tained from the previous sections in order to expose how it is

possible to recover words of the secret key d from the leakage.

Starting from the case where the leaked word directly depends
on d, i.e. the fault hit the value r during the rd multiplication,

we can obtain:

s̃ = s± dı̂2
µ+(ı̂+̂)wk−1

=
e+ rd

k
± dı̂2

µ+(ı̂+̂)w

k

Solving the equation for k yields:

k =
e + rd

s̃
± dı̂2

µ+(ı̂+̂)w

s̃

Using all the scalar values in the equations as scalar coeffi-

cients in a point scalar multiplication, employing as a base
point the curve generator G we obtain:

[k]G =
[e
s̃

]
G+

[r
s̃

]
[d]G±

[
dı̂2

µ+(ı̂+̂)w

s̃

]
G

Finally, by substituting the value of the public key Y = [d]G
in the former equation yields:

[k]G =
[e
s̃

]
G+

[r
s̃

]
Y ±

[
dı̂2

µ+(ı̂+̂)w

s̃

]
G (7)

Observing this last result, we notice that every value, except

for the last summand and the value of the scalar k are fully
known. However, through employing the result proven before

in Statement 1, it is possible to obtain at most 4 values of the
actual [k]G employing the publicly known r value, thus we

will substitute the point [k]G with all the possible valid ones

R. Proceeding now to solve the equation in the only unknown
left, we obtain:

±
[
dı̂2

µ+(ı̂+̂)w

s̃

]
G = R −

[e
s̃

]
G−

[r
s̃

]
Y (8)

Analogously, it is possible to derive from the effects of a

fault on the multiplication combining hk−1, where h = (e +
rd):

s̃ =
e+ rd

k
± khı̂2

µ+(ı̂+̂)w

k
(9)

thus leading to:

±
[
hı̂2

µ+(ı̂+̂)w

s̃

]
R = R−

[e
s̃

]
G−

[r
s̃

]
Y (10)

It is possible to write a unified form for both equations,

through indicating with ρ the leaked word, be it either dı̂ or
hı̂, and with P1 and P2 two points of the curve computable

from known values. Through indicating as θ = µ+(̂ı+ ̂)w the
position of the faulty bit, where µ indicates the fault position

within a word of the computing architecture, while w indicates

the word length.

[ρ]
([
2θ
]
P1

)
= ±P2 (11)

This equation shows that the value of the leaked word ρ is

obtainable through solving a reduced complexity ECDLP. In

particular, it is important to notice that the value of ρ is
confined within the bounds of the values representable in

a single word of the computer architecture computing the

ECDSA algorithm. This implies that, contrarily to the value of
the hidden random number k, which is at most as large as the

curve order (192-521 bits for NIST standard curves [1]), the

value of w is bound to be 8 to 32 bits long in most of the cases.
Due to the limited range of values of ρ it becomes practically
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feasible to solve the ECDLP problem in the previous equations

using one of the well known algorithms. We chose to employ

the baby-step giant-step algorithm [5] for our simulations since
it can be efficiently adapted to the special case of computing

many logarithms employing the same base point. Since the

two known points depend on the guess R made before, in
order to retrieve a leaked word it is necessary to compute

either two or four discrete logarithms for each retrieved value

of ρ, if the position of the fault θ is known (as in the case of
clock glitch based fault injections). In case it is not possible

to know a-priori the position of the fault it is still possible to

compute a logarithm for each possible guess for θ. As shown
in the experimental evaluation section, this is still within the

computational power available with a common desktop PC.

C. Fault Position Recognition

We will now analyse the result of the logarithm computation

to understand how to use it for the subsequent reconstruction

procedure. To this end, we need to discern the position when
the faulty bit in the computation was inserted.

Basically, a logarithm computation cannot distinguish

among (2zρ)2θ and ρ2θ+z. We rewrite ρ as ρ = ρ′2τ where

ρ′ is taken to be odd and τ ≥ 0 is called a shift coefficient.
Being ρ′ uniquely determinable by the logarithm computation

it is possible to write the following

ρ2θ = ρ′2τ+µ+(ı̂+̂)w

The problem of knowing the correct ρ is therefore reduced to

the problem of guessing the correct τ .
It can be noted that ρ < 2w implies τ ≤ w − ⌈log2 ρ′⌉.

In other words, said nh and nl the amount, respectively, of
the leading and trailing 0’s in the binary expression of ρ, the
amount of admissible shift coefficients is given by 1+nh+nl.

Finally, we note that for any given hypothesis for τ the value
µ = θ − τ mod w and the sum (̂ı + ̂) = (θ − µ − τ)/w
are uniquely determined. The latter will be needed by the key

reconstruction procedure.

As special case, let us note that if ρ ≥ 2w−1 and ρ mod 2 =
1 hold at the same time there is no uncertainty and it is possible

to state that τ = 0. Indeed, if the retrieved words are uniformly
distributed in [1, 2w − 1], this case is not so rare, having a

probability approximately 1/4. We can furthermore give an

estimation of the expected uncertainty about the alignment of
the word ρ that will have to be considered by the attacker.

Considering ρ as a discrete random variable following a

uniform distribution U [1, 2w−1], we can model the probability
of every bit of ρ being equal to zero as a Bernoulli distributed

random variable with parameter 1/2. The amount of leading

and trailing 0’s of the word may therefore be approximated
with a geometric distribution with parameter 0.5, thus resulting
in a single leading and a single trailing zero on average.

The expected value of the total amount of admissible shift
coefficients τ for a word is thus 3, i.e. 0 ≤ τ < 3.

D. Key Reconstruction Techniques

We will now present how to use the values retrieved by

applications of the logarithm search explained in section III-B
to a number of faulty signatures in order to reconstruct the

whole secret key d. At this point the attack procedure splits

into two different attack procedures, depending on whether the
fault hit the first or the second multiplication during the actual

composition of the message and the secret key during step 5
of Algorithm 1.

In case the fault injection technique does not allow to know
into which multiplication the fault has been injected (i.e. the

fault injection is not timed), the faults may hit any of the 4
different operands involved in the multiplications, i.e. the key
d, the mask r, the inverse of the nonce k−1 and the combined

data h = e+rd. It is possible to identify and discard the values

belonging to the words of r, since this value is known, through
checking the retrieved word against the words composing it.

Since the secret key d is the only value of the four which

is not changing throughout different runs of the algorithm,
it is therefore possible to identify the words of the key as

they are, with high probability, the only ones to appear more
than once if a uniform distribution of the faults is considered.

On the other hand, the remaining words, belonging to either

k−1 or h will need a more complex procedure in order to
allow the attacker to reconstruct the secret key. Namely, it will

be necessary to repeat the reconstruction procedures making

guesses for each of those words.
Willing to tackle the issue of reconstructing d in case the

retrieved words belong directly to it, it is needed to understand

the correct order in which those must be put back together.
In order to do so, the attacker needs now to recover the loop

iteration ı̂ which represents the position of the retrieved word

ρ = dı̂ within the original value. As previously mentioned,
it is possible to obtain the sum of the loop and word index

where the fault happened α = (̂ı+ ̂). Such value belongs to

[0, 2σ− 1]. Since only the sum of the two values is known to
the attacker, one way is to retrieve words leaking from each

of the 2σ − 1 distinct positions. Consider in the two cases
for which α = 0 and α = 2σ − 2 there is no ambiguity

on the value of ı̂ and it is thus possible to recognize the

words d0 and dσ−1. This in turn allows to disambiguate if
a discovered word for α = ı̂+ ̂ = 1 is the result of an error

falling in ı̂ = 0, ̂ = 1 or in ı̂ = 1, ̂ = 0. It is possible

to iterate the disambiguation procedure, employing the newly
discovered values, until all the words of the secret exponent

are correctly placed in their location. In case fewer than the

necessary faults are available, it is possible to check all the
possible permutations of the still ambiguous words through

computing the public key corresponding to the alleged value

of d and verifying the equality with the known public key.
The second key reconstruction procedure assumes that the

collected words come from the second multiplication of the
signature computation instead, i.e. (e+rd)k−1. We will restrict

the analysis to the case ı̂ = α = 0 for the sake of clarity,

though it is possible to extend the analysis also to the other
values of α. Since the word which is retrieved from one faulty

signature is h0 where h = e + rd, it is possible to write

e + rd mod n = ξ2w + h0, where ξ represents the unknown
part of h. While a single equation of the previous form does

not allow the recovery of d, employing a collection of faults to

write different equations of the same form allows to formulate
the key retrieval problem as a Hidden Number Problem

and solve the system eventually finding d. The relationship

between the DSA family of protocols and the HNP has been
deeply analysed in [10], [11].

To address the word alignment issue described in section

III-C two main ways to proceed are possible. The actual choice
of an attacker should again be the combination of the two that
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TABLE I
NUMBER OF FAULTS AND COMPUTATION TIME REQUIRED TO RETRIEVE THE WHOLE SECRET KEY

Architecture DLP Precomputation Time [s] DLP Time [s] Number of Faults HNP Time [s] Total Time [s]
Word Size P-192 P-521 P-192 P-521 P-192 P-521 P-192 P-521 P-192 P-521

8 < 10−3
< 10−3

< 10−3 1.2 · 10−3 28 115* 0.80 180 2.2 250

16 < 10−3 0.030 0.036 0.017 13 37 0.34 6.7 83 330

32 1.8 7.7 1.3 5.9 7 17 0.092 0.97 1.5 · 103 51 · 103

64 120 · 103 500 · 103 107 · 103 446 · 103 4 10 0.05 0.45 56 · 106 220 · 106

leads to the best performance, considering the cost of the word

retrieval. The first way is to try the lattice attack more than

once, using every possible alignment of the words. A different
approach is to discard some retrieved ρ’s, keeping only the

certain ones, i.e. the words of the type (1 · · · 1)2. We know

that r and thus e + rd change at every execution, and the
retrieved word hı̂ can be considered to be evenly distributed

in [1, 2w− 1], so that the discussed type of word appears with

probability ≈ 1/4.

IV. FEASIBILITY ANALYSIS

In this section we will evaluate the computational require-
ments and the number of faults needed in order to recover fully

an ECDSA signature key depending on the different levels

of security and target architecture word size. The required
computations were performed employing a C implementation

of the baby-step giant-step algorithm and Sage [12], on a
Gentoo Linux x86 64 running on an Intel Core i7 920

endowed with 12 GB of DDR3 RAM. All the timings are

taken on a single core, fully serial implementation of both
the DLP and HNP solvers. Table I reports the running times

required to fully retrieve the whole secret key depending on

the word size of the targeted device architecture and the level
of security chosen. The table reports the upper and lower

bound curves indicated by NIST as the standard ones to be

employed. As it can be seen from the table, the required
number of faults is below 40, except for the 8-bit case, since

every fault leaks significantly less informative content. The

table shows the number of required faults to solve the HNP
with probability≈ 1. The only noticeable exception happens in
the unlikely case a P-521 curve is used on 8-bit architectures,
slightly more than 115 faults are required to provide a 50%

chance of recovering the key. However, it is practically viable

to collect thousands of faults if fault injection techniques such
as voltage brown-outs [13] or clock glitches without damaging

the target device. The required computation times for a whole

attack, taking into account the need to repeat multiple discrete
logarithm computations are reported in the last column of

table. As reported, it is practical to recover the secret key

of the ECDSA algorithm within minutes for 8- and 16-bit
architectures, while the recovery takes a couple of hours for

32-bit ones. For the sake of completeness, also timings for

64-bit architectures are reported, although they are not yet
present in the embedded systems environment. In this case,

the time requirements scale up to a few years. However, all

the mentioned attacks may be fully parallelized (since there are
no dependencies among the solutions of the different DLPs),

achieving easily an order of magnitude of speedup through
the use of general purpose parallel co-processors such as the

recently available OpenCL compliant video cards. Such an

improvement would bring down the breaking time to only a
few months, thus allowing a single attacker to break ECDSA

even when the highest security grade curves are employed on

a 64-bit platform.

V. CONCLUSIONS

In this paper a novel attack against the Elliptic Curve

DSA has been presented. This attack targets the signature
recombination part of the algorithm, a point that was not yet

analysed by any known fault attack on ECDSA. The proposed

attack is able to fully recover the secret signing key through the
injection of single bit transient faults, which can be injected

with low cost equipment and without damaging the device

under attack [14], [15]. The discovery of the key succeeds
because the fault injection allows an attacker to reduce the

ECDLP at the basis of ECDSA to a reduced size version which

is computationally solvable in short time. The post processing
times are compatible with common consumer grade desktop

PCs for all the curves standardised by NIST in FIPS-186, and

in general it does not depend on any particular feature of the
chosen curves. It may also be possible to extend our attack

technique to the regular DSA, since it shares the signature

recombination methodology with ECDSA.
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