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ABSTRACT
We introduce a general framework to automate the application of
countermeasures against Differential Power Attacks aimed at soft-
ware implementations of cryptographic primitives. The approach
enables the generation of multiple versions of the code, to prevent
an attacker from recognizing the exact point in time where the ob-
served operation is executed and how such operation is performed.
The strategy increases the effort needed to retrieve the secret key
through hindering the formulation of a correct hypothetical con-
sumption to be correlated with the power measurements. The ex-
perimental evaluation shows how a DPA attack against OpenSSL
AES implementation on an industrial grade ARM-based SoC is
hindered with limited performance overhead.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]:
Microprocessor/microcomputer applications;
C.5.3[Computer System Implementation]:
Microcomputers[portable devices];

General Terms
Security

Keywords
Power Analysis Attacks, Software Countermeasures, Dynamic Code
Transformation, Polymorphic Code

1. INTRODUCTION
The general trend in embedded hardware security shows a large

use of cryptographic operations, and an increasing attention to-
wards tamper resistant designs and countermeasures against side-
channel attacks like power analysis and fault injection. Indeed, it is
effectively proven that the physical access to an embedded device
may enable the recovery of sensitive information, which is other-
wise supposed to be hidden [1,2,8], through exploiting both the im-
plementation weaknesses of the cryptographic operations and spe-
cific features provided by the underlying hardware platform. Dif-
ferential Power Analysis (DPA) introduced in [6] has been proven
a powerful threat that triggered a flourishing research branch with a
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wide range of improvements and countermeasures both in hardware
and software. DPA attacks against an unprotected implementation
of a cryptographic algorithm follow a common workflow: first of
all they measure the power consumption (power traces) of the tar-
geted device for a high number of runs (i.e. considering a high
number of input/output values). Subsequently, they select an inter-
mediate operation of the algorithm employing a part of the secret
key, and compute an expected consumption for every possible value
of the key portion, according to a model of the triggered switching
activity (e.g. the Hamming weight of the outputs). Finally, the
predicted consumption values are matched against each sample of
the recorded power traces to assess which key hypotheses fit better
the actual measurements. In this fashion, the secret key can be re-
covered, one part at time, even if the relevant information is stored
within the device in a non accessible way. The principal counter-
measures against power analysis are split into two categories [8]:
masking and hiding. Masking aims to invalidate the link between
the predicted hypothetical power consumption values, associated to
the selected intermediate operation, and the actual values processed
by the device. In a masked implementation, each sensitive interme-
diate value is concealed through splitting it in a number of shares,
which are then separately processed. Hence, the target algorithm
is modified to correctly process each share and to recombine them
at the end of the computation. A masking scheme with only two
shares is composed by the values vm andm, wherem is a randomly
chosen mask and vm is a share such that the value v to be protected
can be derived as v=vm�m, with � denoting an invertible binary
operation. To compensate for this countermeasure, more sophisti-
cated DPA attacks, known as high-order DPAs rely on predicting
the consumption of all the operations handling the shares and try to
obtain a combination of them independent from the masking val-
ues. This value must subsequently be correlated with an analogous
combination of the measured consumption values, employing the
same techniques of a common (first order) DPA. The technical ef-
fort in carrying out an high-order DPA attack quickly grows as the
order (i.e. the number of shares) increases just as the time/space
resources to be employed in recording a larger number of power
traces. It is commonly accepted that a masking scheme with a large
number of shares makes DPA attacks either practically unfeasible
or inconvenient. Typically, engineering solutions strive to intro-
duce a moderate overhead with respect to the unprotected version
of the primitive, resorting to the combination of two-share masking
schemes and hiding techniques [9]. Hiding methods aim to conceal
the relation between the power consumption and the operations per-
formed by the target algorithm to compute the intermediate values.
The protection strategies employed in the open literature, to secure
software implementations, are based on execution flow randomiza-
tion via shuffling the order of some instructions (f.i., permuting the
sequence of accesses to lookup tables) and inserting random delays
built with dummy operations [9, 10].



To minimize the performance overhead, the execution must be in-
terleaved with delays in multiple places, keeping the individual de-
lays as short as possible. In this way, an attacker faces a cumulative
and hardly predictable sum of delays between the start (the end,
respectively) of the algorithm and the location of the observed in-
termediate operation in time [4]. These techniques only affect the
time dimension of the power consumption but they do not change
the power consumption characteristics of the operations performed
by the target device. In spite of the limits of the aforementioned
techniques, software countermeasures are well suited for general
purpose processors where no dedicated security features are built
in at design time. In addition to this broad range of applicability,
software-based countermeasures represent also a viable mitigation
mean to restore security into hardware-protected systems, where
the underlying hardware protections have been compromised, with-
out the need for an expensive part replacement.

1.1 Contributions
The novel approach proposed in this work is a software counter-

measure framework based on the combination of a cryptographic
algorithm implementation with a polymorphic engine which dy-
namically and automatically transforms the binary code to be pro-
tected. Thus, we propose innovative contributions to two common
practices in the field: (i) static generation of the protected code;
(ii) manual and often application-specific generation of the pro-
tected code. Our method moves the code generation at run-time,
and enables the generation of many different versions of the pro-
tected code at the designer’s will, preventing any attacker from
both recognizing the exact point in time where the observed op-
eration is executed and understanding how such operation is actu-
ally performed. This methodology separates the creative work of
identifying replacements for assembly code snippets from the te-
dious (but amenable to automatization) work of applying such re-
placements to the entire code. This strategy largely increases the
effort needed to predict the value of a sensitive intermediate result
of the considered algorithm and hinders the formulation of a cor-
rect hypothetical consumption to be correlated with the power mea-
surements. Polymorphic engines are the key component to build a
special class of programs: the ones characterized by the ability to
modify parts of their own code. In particular, a polymorphic code
is composed of two parts: the polymorphic engine, which never
changes, and the target code to be modified. Self-modifying code
is used in several areas to provide either optimization or obfusca-
tion: dynamic compilers, and especially fragment linking [5], tam-
per resistant software and protection against reverse engineering
of executable code [7]. We adapt self-modification principles to
both swap parts of the target algorithm with different, but semanti-
cally equivalent, replacements and to implement concepts such as
masking and hiding. In particular, concerning the hiding counter-
measure techniques, our approach provides both time-dimension
and switching activity hiding, through changing both the type of
operation and the time needed to compute the same intermediate
value. With respect to state of the art, we provide: (i) a generaliza-
tion, through allowing several types of countermeasures to be ap-
plied in a unifying framework; (ii) an extension, through providing
variants to existing countermeasures; (iii) an increased variability
of the protected code, through re-generating it as often as needed
by means of dynamic code morphing. To this end, we allow the
countermeasure designer to specify, for each operation or group of
operations, a set of code transformation templates that can be au-
tomatically applied to the binary code of the target cryptographic
primitive. Sufficient generality is provided to allow the expression
of random delays such as those proposed in [4], as well as to repli-
cate other hiding strategies, such as those shown in [3]. The avail-
ability of a wide range of transformations in our framework allows

the trade-off between performance overheads and security margin
to be finely tuned at design time.

1.2 Case Study
We chose as a case study platform an ARM926-based STMi-

croelectronics SPEAr SoC, as a representative of a large class of
high-end embedded devices where commonly no hardware protec-
tion against side channel attacks are employed. The chosen crypto-
graphic primitive is the AES, as implemented in the widely diffused
OpenSSL toolkit. The choice of this testbench was driven by the
large adoption of this algorithm as a mean to provide data confi-
dentiality. The most common intermediate values employed during
an attack to an AES implementation are represented by output of
a load operation from the S-Box, triggered by the SUBBYTE step
and by the output of the post-ADDROUNDKEY state. However, in
the selected platform, the consumption model relying on the latter
is by far more effective than the one relying on the S-Box, due to
the unpredictable power saving on the load operations caused by
the use of data caches (see Section 4). Even if the number of suc-
cessful DPA attacks against software implementations on complex
SoCs is rather low due to the complexity of such devices, we were
able to extract the full AES key from the testbed platform with a
sensibly low number of measurements. Once the attack has been
proven feasible, we employ the proposed framework to effectively
and efficiently counteract the identified vulnerability.

The remainder of the paper is organized as follows. Section 2
provides the definitions necessary to formalize the code morphing
operations. Section 3 introduces our code transformation frame-
work, and describes the proposed polymorphic engine. Section 4
presents the experimental evaluation on the target case study. Sec-
tion 5 provides a brief overview of closely related works. Section 6
draws some conclusions and highlights future directions.

2. SEMANTIC EQUIVALENCE OF CODE
FRAGMENTS

Our approach of building a different version of a static binary
code at run-time prior to executing it relies on the substitution of
each static code fragment with one of its randomly-chosen variants,
preserving the black-box behavior of the original static code. The
notions of code fragment and semantic-equivalence between code
fragments are formally defined as follows.

DEFINITION 2.1 (CODE FRAGMENT). A sequence of instruc-
tions I=(inst1,. . . ,insts), s≥1, is a code fragment when each
term instj∈I is executed exactly once, instj executes before
instj′ ∀ j, j′ such that j<j′≤s, and no other instruction is exe-
cuted between instj and instj+1, 1≤j<s.

Intuitively, the sequence of terms composing a code fragment must
not include any branch or privileged instruction like a supervisor
call, an I/O or an I/O MMU-bypass operation.

DEFINITION 2.2 (SEMANTIC EQUIVALENCE). Let I, Ĩ be
two code fragments, and let A(I), A(Ĩ) be the sets of live-out
variables related to I and Ĩ, respectively (i.e.: registers and mem-
ory locations that from the exit of the code fragment on are read at
least once). A semantic-preserving relation between I and Ĩ is an
equivalence relation, S∼, where A(I)=A(Ĩ) and the correspond-
ing written live-out values are the same.

Given a generic code fragment, the problem of constructing a set of
semantically equivalent variants is not practically interesting with-
out a precise characterization of the goals to be achieved (f.i. it is
easy to generate an infinite set of equivalent code fragments from



a single-instruction loop). Therefore, in the following we formu-
late sufficient criteria to either map a given code fragment to a
semantically-equivalent one or verify if two code fragments have
the same semantics. The translation of the original static code is
performed through locally scoped substitutions that are easier and
more efficient to implement than global ones. Thus, the semantic
equivalence of the resulting program is obtained from the compo-
sition of sematically equivalent independent code fragments, thus
limiting the performance impact of the dynamic translation.

PROPOSITION 2.1 (CODE FRAGMENT EQUIVALENCE).
Let I=(inst1,. . . ,insts), s≥1, and Ĩ=(inst1,. . . ,insts̃), s̃≥1,

be two code fragments. The semantic equivalence Ĩ S∼I is pre-
served if: (1) every register, regk, k≥0, of the CPU is employed
in I, and Ĩ according to the following constraints: (1.a) regk is
either not included in any register assignment operations of I nor
Ĩ or (1.b) regk is used only in Ĩ, where it is spilled to the mem-
ory before any assignment and filled back as last action, or (1.c)
the collections of possible register values at the end of I and Ĩ
(computed with the same initial values) must be the same; (2) the
memory assignments derived from the sequence of write-operations
in I are preserved in Ĩ, with the same values; (3) any memory as-
signment performed in Ĩ but not in I writes the stack segment in
memory locations outsideA(Ĩ), i.e.: in memory locations after the
position of the stack pointer at the end of I.

PROOF. The first condition implies that for all CPU registers the
corresponding values at the end of I, and Ĩ are exactly the same.
Therefore, the condition required by Definition 2.2 that all live-
out registers,A(I) andA(Ĩ), have the same corresponding values
is trivially satisfied. The second condition ensures that memory
locations referred in I and Ĩ are also written in the same order and
with the same values. The last condition allows additional memory
assignements in Ĩ to target a larger portion of the stack segment
w.r.t. I, nevertheless restoring the same value of the stack pointer
in I at the end of the fragment Ĩ as required by the first condition.
The memory assignments are guaranteed not to be live-out, which
matches the requirement stated in Definition 2.2.

It is important to note that the sufficient conditions stated in Propo-
sition 2.1 are locally verifiable, while Definition 2.2 employs the
liveness property, which must be computed for all memory loca-
tions and registers. This requires a global analysis, unfeasible at
run-time, and not always feasible at all even at compile-time if the
whole address space is considered. By contrast, the conditions in
Proposition 2.1 only rely on information which can be retrieved
through a linear scan.

3. TRANSFORMATION FRAMEWORK
The proposed framework takes as input a target cryptographic

algorithm, and statically compiles it to produce a binary code with
proper calls to a run-time library which implements the code mor-
phing engine and is in charge of modifying the target code on the
underlying architecture. Figure 1 reports an high level descrip-
tion of the code transformation flow. The static compiler operates
within the standard compilation process from source code to ma-
chine code. The source program is written as a C code with some
specific annotations. Code annotations are usually employed to
encode more information for the compiler than the explicit source
code, such as hints about how to organize or optimize the interme-
diate representations of the code. In our case, we employ a custom
gcc __attribute__ (defined as: __attribute__((secure))
before a function or variable declaration) to specify to the compiler
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Figure 1: Compilation and run-time code transformation flow

which functions and data structures need to be secured. In the case
of functions, for each stage of the static compiler (left side of Fig-
ure 1), the transformation flow wraps their calls with invocations of
the Code Morphing, Rescheduling, and Array Access Permutation
run-time routines. The case of array variable declarations is man-
aged by the third stage of the static compiler (Array Access Per-
mutation Setup) which makes the access to every array cell as an
indirect access through using a further array (with the same length)
containing a permutation of indexes. The Code Morphing Setup
stage also allocates in memory the data structures (tile set) con-
taining the knowledge base needed to perform the code morphing,
through substituting each code fragment with one of its semanti-
cally equivalent variants included in the tile set. At run-time, the
polymorphic engine, reported on the right-hand side of Figure 1,
changes the original binary code through performing three steps:
Code Morphing, Rescheduling, and Array Access Permutation. The
Code Morphing stage, which is the core of the proposed approach,
is described in greater detail in the next section.

The Rescheduling step adds a level of obfuscation with respect
to the possible recognition (or classification) of the executed code
through rearranging the instructions within a finite window, in such
a way to preserve the data dependencies. This operation is per-
formed by means of a single scan of the code, from the bottom to
the top. At each step, a single instruction insti and a window of k
instructions preceding it {insti−1,. . . ,insti−k} are considered.
The dependencies of insti are computed, and the earliest posi-
tion i−h (h≤k) which it can take is determined. Then, a random
position i−l in the range [i−h, i] is selected, and the instructions
are reordered consequently. Finally, the next value of i is set to i−l,
and the process continues until the start of the code is reached. This
technique is based on the well-known code scheduling theory em-
ployed in the field of compiler optimization. The code scheduling
theory provides a set of semantic preserving schedules for a given
code. Where the compiler practices select a schedule to minimize
latency and/or power consumption, our goal is to randomly change
a given schedule with a different (but equivalent) one to alter the
shape and mutual alignment of the power traces.

The Array Access Permutation step applies a random permuta-
tion to the allocated array indexes, hiding the access patterns to the
substitution table of a symmetric cipher. The access pattern hid-
ing technique has been proposed and detailed in [9, 10]. Since the
access to substitution tables is not the preferred attack point in our
testbed platform, for the sake of brevity, we refer to the aforemen-
tioned works for further details.
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3.1 Code Morphing Engine
To apply code morphing to a wide variety of code fragments, it is

necessary to represent them in a way that abstracts from the actual
registers and immediate values employed (e.g., add r2,r5,r2
only differs from add r4,r11,r4 in the registers used, and both
can be abstracted to a normal form add r0,r1,r0). To clarify
the normalization process, we will now formally define the con-
cepts of register normalization and constant normalization.

DEFINITION 3.1 (REGISTER NORMALIZATION).
Given a code fragment I=(inst1,. . . ,insts), s≥1, where insti,
with 0≤i≤s, is a data processing assembly instruction specified
as opCodedest,src,operand, a register normalization is a
map of the register names appearing in the fields {dest, src,
operand} of the instruction sequence, into register names starting
from r0 for the first register in inst1 on.

DEFINITION 3.2 (CONSTANT NORMALIZATION).
Given a code fragment I=(inst1,. . . ,insts), s≥1, where insti,
with 0≤i≤s, is a data processing assembly instruction specified
as opCodedest,src,operand, a constant normalization is a
map of the immediate values appearing in the fields {src, operand}
of each instruction, into immediate values starting from #0 on, to
be interpreted as symbolic constants in the resulting instruction.

Building on the two previous definitions the normalized code frag-
ment can be defined as follows:

DEFINITION 3.3 (NORMALIZED CODE FRAGMENT).
Given a code fragment I=(inst1,. . . ,insts), s≥1, a normalized
code fragment, I, is the sequence of instructions resulting from the
application of both register (Definition 3.1) and constant (Defini-
tion 3.2) normalization mappings.

In principle, for each normalized code fragment Ii, i≥1, a set of

m≥1 semantically equivalent fragments SIi={Ĩi,0,. . . ,Ĩi,m−1},

Ĩi,j
S∼Ii,∀ j∈{0,. . . ,m−1}, can be written through applying the

sufficient conditions specified by Proposition 2.1. Note that any
non-trivial SIi set must be created manually.

EXAMPLE 3.1. Consider a code fragment I composed by a sin-
gle instruction inst1:eor r5,r0,r4, which writes into r5 the
bitwise exclusive-or of the values in r0 and r4 (r5�r0⊕r4). Its
normalized form is computed as eor r0,r1,r2, while a cor-

responding semantically equivalent fragment is given by Ĩ=(bic
r0,r1,r2; bic r3,r2,r1; orr r0,r0,r3 ) S∼I, where the
ARM ISA instruction bic r0,r1,r2 computes r0�r1∧¬r2.
The use of extra registers, as r3, must be managed through clob-
bering the temporary registers before their use, and restoring them
at the end of the instruction sequence in I.

It is possible to generate large SIi sets, which must be stored in
memory and used as a knowledge base for the Code Morphing

phase. Therefore, a key issue is to provide a compact representa-
tion for them. Note that, for the same I, we can generate several Ii
which differ only by the values assumed by some of the constants
involved.

Given the normalized fragment I=(and r0 r1 #0), the de-
signer may want to replace it by applying the following transfor-
mation:

r0 � (r1 ∧ (#0 ⊕ const1)) � (r1 ∧ (#0 ⊕ const2))

where � is ∧ or ∨ and const1 and const2 are additional sym-
bolic constants such that const1⊕const2=0xf. . .f if � is ∧
and const1⊕const2=0x0 if � is ∨. Two semantically equiva-

lent fragments Ĩ0, Ĩ1, to I are:

Ĩ0= (
andr0,r1,#0⊕const1
andr2,r1,#0⊕¬const1
andr0,r0,r2

)

Ĩ1= (
andr0,r1,#0⊕const1
andr2,r1,#0⊕const1
orrr0,r0,r2

)

where const1 is an additional symbolic constant that can assume
any value, whereas the symbolic constants #0, #1,. . . derived from
the constant normalization are constrained to their original immedi-
ate value, and r2 is a clobbered register. We formalize the concept
of a normalized code fragment augmented with operations on sym-
bolic constants as follows.

DEFINITION 3.4 (TILE). Given a normalized code fragment
Ii, a tile ti is a set of normalized fragments semantically equivalent
to Ii, distinguished only by the values of additional symbolic con-
stants const_j. These constants appear as immediate operands
in the instructions of the code fragments, either alone or as part
of constant expressions containing arithmetic-logic operators and
symbolic constants from Ii.

The expressions on symbolic constants are encoded within the bits
used to encode the immediate operand fields of each instruction
in the tile. As for the code fragments, it is possible to write a set
Sti , which is a collection of tiles for the normalized code frag-
ment Ii. For each normalized code fragment I0, I1, . . ., the col-
lection of the semantically equivalent tiles {St0 , St1 , . . .}, which
must be protected, represents the whole tile set of the morphing en-
gine. The complete workflow of the code morphing engine, shown
in Figure 2, is composed as follows. First, the input code frag-
ment I is mapped to a normalized code fragment I through the
Register/Constant Normalization step. Then, a tile is randomly se-
lected from the Tile Set to replace the normalized code fragment.
The Register/Constant Denormalization procedure is then applied
to the registers and symbolic constants. Finally, in the Constant
Values Computation step, any symbolic constant is replaced by a
random value, and the constant expressions encoded in the tile are
evaluated to obtain the immediate operands.

4. EXPERIMENTAL EVALUATION
The experimental platform used to provide a validation of our

framework is an ARM-based STMicroelectronics SPEAr Head200
development board. The SPEAr SoC is based on a 32-bit ARM926EJ-
S processor running at 133 MHz, without any OS, for the sake of
more precise analysis of the results. The AES binary, based on
OpenSSL 1.0.0d, with 4 T-tables, is run directly from the U-Boot
bootloader. The attack exploits the outcome of the xor operation in
the first ADDROUNDKEY, which is stored in a register.
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(a) Unprotected system results
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Figure 3: Highest correlation values for correct and best-wrong key guesses as a function of the number of traces, together with
their 80% confidence intervals. For the unprotected system, at least 11600 traces are needed to distinguish two separated confidence
intervals, i.e. the correct key guess (a). In the case of the protected system (one morph action every 100 traces), all the correlation
peaks have statistically negligible values, regardless of the key hypothesis and the increase in the number of traces (b)

4.1 Performance evaluation
Both the protected and the unprotected systems have been evalu-

ated to assess the time overhead introduced by the countermeasure.
Through employing a GCC 4.3 based cross-compile toolchain, we
observe that the original AES algorithm is composed of 536 in-
structions, clustered in 20 distinct normalized instructions. We em-
ploy three, 4-instruction long, tiles to protect the 64 eor code frag-
ments in the whole AES. Thus, instruction replacement adds on av-
erage 4 computational instructions for each substituted eor, plus
a load/store pair to handle clobbering. Still, we expect a reduced
overhead, as most of the AES execution time is spent in accessing
memory for the T-table lookups. The timings have been gathered
directly via trace length measurements on the oscilloscope. On av-
erage, a run of the unprotected AES algorithm takes 228.8 µs, while
a run of the protected one runs for 245 µs, thus resulting in a per-
formance hit of 8.2% of the AES execution time. The overhead
due to the code morphing amounts to 90 ms per morphing action.
Since the code morphing algorithm is intrinsically memory bound,
the majority of this delay is ascribed to accesses to the off-chip
memory in our platform. To cope with the additional performance
hit, the number of calls to the code morpher over the encryption
algorithm runs can be tuned to bring the amortized encryption time
within acceptable bounds for the target system. The following sec-
tion shows how the overhead is reduced to a fraction of the time of
one encryption run, and evaluates the security margin provided.

4.2 Differential power analysis
Measured power traces were obtained with an Agilent Infini-

iumDSO80204B oscilloscope and an active Agilent 1131A differ-
ential voltage probe with a 3.5 GHz analog bandwidth.The oscil-
loscope features 4 independent analog channels, a 2 GHz analog
bandwidth, coupled with an 8-bit ADC capable of recording 40
Gsample/s, with a noise floor of 3 mV RMS, and a minimum ver-
tical resolution of 10 mV. The measured power traces have been
acquired using a sampling frequency of 500 Msamples/s over an
acquisition window of 100 ksamples. The trigger signal is provided
via a GPIO pin on the board and collected via a passive probe con-
nected via an Agilent E2697A impedance adapter.

The power measurements have been obtained via measuring the
voltage drop at the ends of a 1 Ω SMD resistor inserted on the
SPEAr SoC power supply line. To reduce measurement noise, each
trace is the result of the average of 32 measurements with the same

plaintext and code. This represents a worst case scenario, as a real
world attacker will not be able to choose which code variant is run-
ning to get averaged measurements. An attacker might trade off
measurements of different plaintexts to gain noise reduction via
averaging; however, the maximum number of measurements with a
single code variant is bound by a design parameter, i.e. the number
of encryption runs before a call to the morphing engine is made.
A first order Differential Power Analysis against both unprotected
and protected AES implementations has been used as testbench.
The employed consumption model is the Hamming weight of one
byte of the output of the first ADDROUNDKEY operation. This op-
eration is computed 32 bits at a time, since that is the size of the
ARM architecture word length. The analysis computes the sample
estimation r of Pearson’s correlation coefficient ρ between each
sample of the actual power consumption measurements (traces) of
the device and the consumption model for each possible hypothet-
ical value of the involved key part. Subsequently, the maximum
values of r obtained for each key hypothesis are sorted in decreas-
ing order. For the attack to succeed, the confidence interval Ir of
the maximum value should not overlap with any of the others. The
correct key hypothesis can be successfully obtained when enough
traces are gathered, as the width of Ir decreases when the number
of measurements increases. An unbiased estimator for the Pear-
son correlation coefficient ρ is: ρ̂=r

(
1 + 1−r2

2(n−3)

)
, where n is the

number of employed samples. To obtain the boundaries of the in-
terval Ir , the probability Prob{ρ̂∈ [rl, ru]}≥γ is evaluated for a
chosen confidence level γ. The theoretical correlation coefficient
for the correct key hypothesis ρc is 0.250 since the observed opera-
tion is performed on 32 bits at a time, while the consumption model
takes into account only 8 of them. By contrast, the key hypothe-
ses differing by a single bit from the correct one (the best wrong
guessed) has a theoretical correlation coefficient ρw=0.218. The
values of the estimators ρ̂c, ρ̂w will converge to ρc and ρw.

Figure 3a shows that 11600 traces are necessary to distinguish
the correct key hypothesis from the best wrong guess with a con-
fidence level γ=0.8. Thus the architecture does not provide any
embedded protection against side channel attacks, despite the com-
plexity of the SoC.

Two crucial factors for a power analysis success are represented
by the knowledge of the implementation strategy of the attacked
operation, which allows to infer its consumption model, and the
perfect time alignment of each trace. The devised countermeasure



Table 1: Impact of the number of runs among morphing ac-
tions on both the security margin of the system (i.e. overlap of
the correct key and best wrong guess confidence intervals) and
execution time of a single protected AES encryption (optimal
tradeoffs in grey). Execution time of a plain AES is 228.8 µs

Code Morphing Confidence Intervals Average
Interval Overlap Execution

[no. of runs] [%] Time

100 79.55 ×5.00
200 79.32 ×3.04
400 79.03 ×2.05
600 78.89 ×1.73
800 78.89 ×1.56

1000 78.98 ×1.46
2000 79.76 ×1.27
3000 79.04 ×1.20
4000 75.16 ×1.17
5000 67.64 ×1.15
6000 56.94 ×1.14

11600 0.00 ×1.10

operates on both factors, thus actively hindering the attack. Conse-
quentially, it is sufficient to perform a code morphing action often
enough to avoid the collection of a significant number of traces
by the attacker. The maximum number of measurements with the
same (albeit unknown) code variant ∆n that an attacker is able to
collect is thus a design-time-chosen parameter indicating the secu-
rity margin of the system.

Figure 3b shows the result of the attack performed while our
protection methodology was in action with ∆n=100. In this case,
the confidence interval for the correct key hypothesis and the best
wrong guess never separate. In addition to this, the correct key has a
sample correlation coefficient lower than the best wrong guess. As
a further validation of our approach, we correlated the key hypothe-
ses evaluated through the same consumption model with random
values, obtaining a peak sample correlation value higher (∼0.08)
than both the previous estimates for ρ̂w and ρ̂c. Thus, collecting
a greater number of traces will not be useful due to the negligible
values of the obtained sample correlation estimates.

A practical measure of the security margin is given by the over-
lap percentage of the confidence intervals of the correct key and the
best wrong guess. We note that this measure is a conservative gauge
of the actual security margin, as the attacker fails to retrieve the key
also when the confidence interval of the best wrong guess is both
disjoint and higher than the one of the correct key. In this case, the
overlap percentage is zero but the attack does not succeed. How-
ever, the opposite scenario does never happen as an overlap of the
confidence intervals unquestionably indicates the indistinguishabil-
ity of the corresponding key hypotheses. The security margin ob-
tained via code morphing for the target platform can be traded off
to achieve a lower computational overhead per encryption run. The
computational overhead for the encryption is composed of a fixed
cost determined by the tile substitution action and an amortized
cost over ∆n runs due to the call to the morphing engine. Table 1
reports the trends of the security margin (i.e. the confidence in-
tervals overlap) and the average execution time of single AES as
a function of the value of ∆n. We verified that the security mar-
gin of this platform does not report significant hits up to an attack
with a half of the traces needed to retrieve the correct key on an
unprotected implementation. The optimal trade-off points for this
platform are represented by running the code morpher once every
2000–3000 AES runs, as this parameter choice preserves a high
security margin, while obtaining an acceptable (around 20%) per-
formance overhead. Raising further the number of AES runs per
morphing action drastically reduces the security margin of the sys-
tem, without a significant performance improvement.

5. RELATED WORK
The distinguishing feature of our solution lies in the code substi-

tution technique, but schemes such as those proposed in [4, 8–10]
can be implemented within our framework by means of specific
tiles. In these works, the results regarding the described implemen-
tations are mostly related to microcontroller platforms and exhibit
case-study specific execution times ranging from two to more than
fifty times the baseline. When considering attacks based on an a-
posteriori model [8], such as template attacks, the very high number
of code variants provided by our countermeasure would require a
prohibitive number of traces to obtain a reliable model, since a sig-
nificant quantity of information should be gathered for all of them.
In [3] the authors propose a framework that employs an information
theoretic metric to identify the most sensitive instructions of a soft-
ware implementation of AES on an 8-bit microcontroller and apply
a static local code modification implementing random precharg-
ing. W.r.t. [3], we propose an automated, dynamic code morphing
approach, which can produce a much larger number of different
semantically equivalent code versions, and it is also able to apply
hiding and masking techniques together in a unified framework.

6. CONCLUDING REMARKS
We presented a framework to automate the application of DPA

software countermeasures at run-time and described a code morph-
ing toolchain that proved to be efficient while ensuring protection
for any cryptographic primitive. The proposed approach can be
applied to either the whole algorithm or to the subset of vulnera-
ble instructions to enhance performances. To our knowledge this is
the first work providing this level of protection while being practi-
cally viable. The analyzed case study showed how to counter DPA
attacks with an acceptable performance overhead. The overhead
may be further reduced when protecting a multi-core platform via
concurrently executing the encryption routine and the morphing ac-
tion. Future works will target microcontrollers where the code is in
a read-only memory via morphing the execution flow with a series
of random jumps along a database of code fragments
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