
Automated Security Analysis of Dynamic Web Applications
through Symbolic Code Execution

Giovanni Agosta, Alessandro Barenghi, Antonio Parata, Gerardo Pelosi
Dipartimento di Elettronica e Informazione (DEI) – Politecnico di Milano

Via Giuseppe Ponzio 34/5, 20133-Milano, Italy
Email: {agosta, barenghi, pelosi}@elet.polimi.it

Abstract—The automatic identification of security vulner-
abilities is a critical issue in the development of web-based
applications. We present a methodology and tool for vulnera-
bility identification based on symbolic code execution exploiting
Static Taint Analysis to improve the efficiency of the analysis.
The tool targets PHP web applications, and demonstrates the
effectiveness of our approach in identifying cross-site scripting
and SQL injection vulnerabilities on both NIST synthetic
benchmarks and real world applications. It proves to be faster
and more effective than its main competitors, both open source
and commercial.

Keywords-Cross-Site Scripting; SQL Injection; Static Taint
Analysis; Symbolic Execution.

I. INTRODUCTION

The modern scenario of software and web development
shows a convergence of the two areas: on one hand, web
sites rely more and more on dynamically generated con-
tent, allowing complex interaction with the users through
collecting and storing information provided by them; on
the other hand, many software applications require remote
user access and collaboration, which are easily obtained
through using rich web browsers within client-server ap-
plications. This convergence has led to the widespread
adoption of Web Applications, which are largely employed
in e-government, e-banking, e-commerce, social networking,
collaborative software development and text editing. Most of
these applications collect sensitive data about their users,
and are therefore potential targets for a wide range of
malicious activities including stealing data, hijacking user
sessions, or phishing. Thus, it is of the utmost importance for
Web Application software to be secured against the whole
range of possible attacks. Traditionally, this is done through
manual processes of code review or code inspection, where
experienced analysts look for specific vulnerable patterns or
even perform simulations of program execution by hand.
The time required for this analysis is huge – indeed, many
modern Web Applications fall in the 100,000+ lines of code
range – leading to higher chance that vulnerabilities remain
undetected. Several automated software analysis tools and
methodologies have been developed to identify security
issues or mitigate their threats. We propose a methodol-
ogy and software framework for fast static vulnerability
identification, and showcase it on the two most dangerous
classes of vulnerabilities, Cross-Site Scripting (XSS) and
SQL Injection (SQLI). Our methodology builds over existing
ones, combining Static Taint Analysis with Symbolic Code
Execution to identify whether malicious user inputs can be

used to subvert the semantics of the application. The rest
of this paper is organized as follows. Section II outlines
the vulnerability identification problem, and describes the
two most common vulnerabilities. Section III describes our
methodology, while Section IV provides an experimental
evaluation of our approach. Finally, Section V discusses the
related work and Section VI draws some conclusions and
outlines future directions.

II. PROBLEM STATEMENT

Web Applications are in general deployed in a two
tier architecture. The client receives dynamic web page
composed by the application server in response to HTTP
requests. The application server contains the application
logic, which can be expressed in any programming language
supporting the CGI interface or an RPC-like remote calling
convention. While in the past binary applications written
in C were common, nowadays interpreted or dynamically
compiled languages, such as PHP, Java, Ruby, and Perl
are increasingly popular. The second tier usually provides
support to the Web Application for data intensive operations
through a dedicated database management system. PHP is
one of the most popular scripting languages, and specifically
it is widely used in Web Applications: the PHP language
support module was reported to be installed on about 40%
instances of the Apache web server1, which itself is by far
the most popular web server, reaching a 70% market share2.
It is used in popular Web Applications such as phpBB,
PHP-Nuke, SquirrelMail and MediaWiki. The two most
common, high risk vulnerabilities in PHP based applications
are SQL Injection attacks (SQLI) and cross site scripting
(XSS) according to OWASP3 and SANS4.

A. Cross Site Scripting Attack
XSS vulnerabilities5 allow an attacker to inject malicious

code in a dynamic web page, embedding it into the generated
web page, thus effectively subverting the layout of the target
form. In a reflected XSS attack, the user is tricked into
clicking on a link to the vulnerable dynamic page, where
the link contains a malicious script crafted by the attacker
within a CGI parameter, as shown in Figure 1. The forged
link points to a website (example.com, which may be a

1www.securityspace.com/s survey/data/man.200704/apachemods.html
2http://www.securityspace.com/s survey/data/200904/index.html
3http://www.owasp.org/index.php/Top 10 2007
4http://www.sans.org/top20/s1
5http://www.cert.org/advisories/CA-2000-02.html

website known or trusted by the user) where a vulnerable
application form (comment.cgi) will produce an output
page containing the injected script (mycomment). This
grants the attacker the ability to disguise malicious code as
part of a trusted web page, thus cheating the user on the real
origin of the page. This ability may be exploited to harvest

<A HREF="http://example.com/comment.cgi?
mycomment=<SCRIPT>malicious code</SCRIPT>">
Click here

Figure 1. Example of reflected XSS attack

sensitive data such as user account or credit card numbers,
input by the user, or directly retrieving sensitive data present
in the client machine such as session cookies or password
files. The stored XSS attack works in a similar fashion,
except that the script is stored into the server (e.g., as a
message board post) and then sent to other clients without
proper processing. When the poisoned page is rendered, the
malicious script is executed on the client machine.

B. SQL Injection Attack
SQLI attacks exploit SQL queries that include user pro-

vided strings without proper checking. The attacker can alter
the form of the query according to the field he is in control
of. The simplest example is shown in Figure 2, where the
query checks into a table the presence of tuples with a key
matching with the user input string. By passing a suitably
crafted parameter (e.g. foo" OR 1=1 ; --) the attacker
can circumvent the check performed by the WHERE clause,
and obtain the entire table in $result. Assuming that the
login form is checking for a non-null value of $result to
grant access to the user, the attacker is able to gain access
without even knowing a valid username or password. The

$result=mysql_query(
’SELECT * FROM table WHERE key="’.
$_GET[’key’].’"’);

Figure 2. Example of PHP statement vulnerable to SQLI

same mechanism can be exploited for more complex actions,
up to gaining remote execution on the DB server, if the
DBMS allows native execution primitives via hooks [1].

III. AUTOMATED CODE AUDITING

A relevant part of life cycle of a reliable software is
represented by periodical code auditing phases. Our ap-
proach targets security oriented auditing, aiming at a sound
re-engineering of Web Applications lacking a reliable and
secure structure. Under a formal perspective, a program af-
fected by security flaws is a syntactically correct and seman-
tically sound codebase, where the introduction of specially
crafted input values may subvert either the execution flow
or lead to unwanted information leakage. To cope with the
need for precise and correct code review process, a number
of computer-aided code auditing suites have been developed.
The achieving of a fully automated vulnerability detection
infrastructure is the holy grail of security-oriented code
auditing. State-of-the-art tools try to either mimic human

Parser

Knowledge
Base

Abstract
Syntax Tree

PHP
Source Code

Sink Point
Detection

Symbolic
Execution

Vulnerability
Check

Codeminer
Analyzer

Vulnerability
Report

Static Taint
Analysis

String History
Tracking

Figure 3. Architecture of the Codeminer Tool

code review techniques through finding code patterns usually
bound to security flaws or use a formal framework to obtain
provable checking of the application structure. The first
technique boasts extremely high efficiency but comparatively
low effectiveness, since it lacks a proper understanding of
complex vulnerability patterns. The second approach, on the
other hand, has a very high detection accuracy, thanks to
the more structured methodology, but often suffers from the
employment of computationally hard algorithms and may
find vulnerabilities which are not practically exploitable.
In the following, we introduce our modular, extensible,
multi-platform code analysis suite named Codeminer, which
aims at being a highly effective checker while retaining the
efficiency required to process large real-world codebases.
The proposed approach exploits a formal description of the
program control flow and data flow to spot inter-procedural
vulnerability patterns which are ignored by pure expression
matching approaches. This enables us to identify complex
vulnerability patterns which are beyond the capability of
tools like RATS [2]. We rely on Symbolic Code Execution
to escape the weight of computationally hard algorithm
which are commonly used in purely formal methods, while
retaining a high precision in modeling the code patterns. We
also exploit Taint Analysis techniques to further enhance
the efficiency, thus making it possible to perform inter-
procedural analysis which would otherwise be unfeasible
on large codebases due to its high computational weight. In
the following subsections we will describe the metodology
adopted to design our tool: Codeminer. Figure 3 shows the
architecture of the tool, highlighting its main components.

First of all the PHP code is transformed into a language
independent representation of the source code, namely an
abstract syntax tree, through the use of a parser. This allows
an easier extraction of the control and data flow informa-
tion needed for our analysis. Moreover, using a language
independent representation enables us to further extend our
tool to analyze code in other programming languages with
minimal effort. Among all the well tested PHP parsers
freely available, we chose to reuse the one implemented
by Minamide [3] for its high efficiency. The crucial point
in secure programming is dealing appropriately with user
controlled input, that is a portion of data in the program
which is directly supplied by a (possibly malicious) user.
From now on we will be referring to all the values influenced
by user input as tainted, to emphasize the potential threat. To

track the effects of tainted inputs, our tool performs a data
flow analysis and ascertains the data paths affected by the
tainting. This allows us to discard all the data untouched
by user supplied values, thus reducing the complexity of
the vulnerability identification without affecting its effec-
tiveness. Module Static Taint Analysis in Figure 3 is the one
implementing the data flow analysis technique. A sink point
is a location in the program where the user controlled input
is employed disrupting the expected behavior or output.
The module Sink Point Detection in Figure 3 is in charge
of recognizing the sink points in the application and is
responsible for triggering the analysis of the inputs. The
information collected during data flow analysis and sink
point detection is subsequently used to decide whether the
tainted values are passing through sink points without any
checking for the presence of possibly malicious inputs. The
Symbolic Code Execution module evaluates the taint status
of a variable, depending on the point of the code in which is
employed, through collecting information about the phases
of execution it has undergone. The Vulnerability Check
module is called by the Symbolic Code Execution module
every time a sink point should be executed and checks for
the actual presence of a vulnerability against a knowledge
base of dangerous patterns according to the sink point type.

A. Sink Point Detection

The first module run by Codeminer is the sink point
detection. This module scans the codebase and checks for the
presence of sensitive functions. Their presence is ascertained
through the comparison with a language-dependent, exten-
sible knowledge base that is provided as input to the tool. It
is thus possible to extend the tool to detect sink points also
in programming languages different from PHP. All the sink
points are characterized by different vulnerability patterns
which require different checkers: the sink point detection
module contains also a reference to the correct checker to
be invoked for each kind of vulnerability.

B. Static Taint Analysis

Once the detection of the sink points is complete, Codem-
iner starts examining the abstract syntax tree provided by the
parser to perform Static Taint Analysis and extract infor-
mation on the chain of modifications which every variable
undergoes. Static Taint Analysis has been first used on Web
Applications in [4], though it was first introduced for the
identification of format string vulnerabilities in traditional
applications [5]. This technique has been implemented in
Codeminer as a forward dataflow analysis, a well-known
technique in optimizing compilation [6], based on the so-
lution of fixed point equations. Our goal is to compute the
reaching definitions for the tainted variables to check if any
part of them is used in a sink point. To this end, the dataflow
analysis is enriched with information regarding the taint
status of each variable. In particular, the transfer function
of the reaching definitions algorithm will set the taint status
for any assigned variable to tainted if at least one of the
variables that are used in computing its value is tainted, or if

$msg

$usr = htmlentities($usr)

$usr = $_GET('usr')

$msg = "Hello: ".$usr

print $msg

$usr taint I(x)

$usr taint

taint

"Hello: "

htmlentities(I(x))

htmlentities(I(x))

I(const)

Figure 4. Construction of the sequences of functions associated with strings
$usr and $msg. I is the identity function, corresponding to a direct read
of a user-input value. C is the constant function, corresponding to the
assignment of a known value

it is assigned a value from one of the builtin functions of the
source language that read input values. In case a conditional
construct is met, the branch taken may also influence the
taint status of a variable. Taking a conservative approach,
the join function of the dataflow analysis preserves the taint
property for a variable if it is tainted in at least one of
the control flow branches. After performing the forward
dataflow analysis, we are able to pinpoint exactly which
tainted variables are fed as parameters to any sink point of
the program. Any untainted variables from now on will be
irrelevant as far as security analysis purposes go, therefore
we may safely avoid to involve them from now on.

C. String History Tracking
The crucial step towards detecting vulnerabilities caused

by unchecked user inputs is to enrich the reaching definitions
through building a precise history of all the modifications
undergone by a string during its lifetime. This allows us
to consider the status of a variable at a finer grain through
distinguishing how it became tainted and its internal struc-
ture, when its value is generated by concatenation of several
strings. We choose to store this information in the form of
a set of function stacks bound to each tainted variable. We
will now describe how these sets are built starting from a
single basic block. When analyzing the code from a security
auditing point of view, the possible actions on the values of
variables (containing strings) may be split into four kinds:
(i) initialization, either from user input or a constant value;
(ii) string concatenation; (iii) application of a builtin function
of the source language; (iv) use in a sink point.

Figure 4 shows an example of the construction of the
data structures associated with the string variables $usr
and $msg from the following PHP code fragment:

$usr = $_GET[’usr’];
$usr = htmlentities($usr);
$msg = "Hello: ".$usr;
print $msg;

The first line of code contains a statement that initializes
a variable directly from user input: this implies that a new
function stack is assigned to the variable $usr, where the
content of the variable is the taint value and the associated
function is the identity function I(·) representing the absence

of manipulations of the variable value so far. The second
line of the code is a sample application of the built-in
PHP function htmlentities, whose task is to remove
all the character involved in HTML tag termination, from
the variable $usr. To represent this action, we add to
the function stack of the involved variable the function
htmlentities through function composition with the
previous function stack. In the third line, we show an
example of the effects of variable concatenation on the
variable representation. Remember that, when two or more
strings are concatenated, the variable that is assigned the
generated value will be considered tainted if at least one
of its components is tainted. Its sequence of functions is
represented by the ordered packing of the function sets
belonging to its components. Figure 4 shows the result of the
concatenation operation between the tainted variable $usr
and the constant valued variable Hello: whose function
sets are composed in concatenation order to obtain the set
associated to $msg. The last line of code is a typical sink
point for XSS vulnerabilities in PHP language, and is em-
ploying the tainted variable $msg. Upon reaching any sink
point, the vulnerability checking procedure is triggered and
the Codeminer tool evaluates the possible security issues,
returning to the variable status analysis after reporting its
findings. The execution of the Codeminer tool ends when all
the variable statuses have been fully analyzed throughout the
whole application and therefore all the uses of the variables
in the sink points have been checked with the Symbolic
Code Execution based routine.

D. Symbolic Code Execution

To obtain a precise model of which functions are applied
to each(exec variable during the execution of each basic
block, Codeminer employs the Symbolic Code Execution
technique, which simulates the actual execution of the pro-
gram through running it in the aggregate [7], i.e. considering
the inputs as belonging to a finite set. In our case, the set of
possible inputs is defined by all the constant values known
at static time, plus the value taint. During the first phase
of Symbolic Code Execution each variable is initialized
according to the status of the taint attribute, which may be
a known value (e.g., 42 or “foo”) or the taint value. After
variable initialization has been completed, each statement
of the basic block is simulated, and the effects on the
variables are recorded. As far as numeric variables go, we
consider the combination of two known values as a known
value, while any combination involving a tainted variable
is considered tainted as a whole, with the exception of the
absorbing element of an operation (e.g., taint ⊗ 0 → 0).
This is sufficient to address any possible security concerns
with numeric variables, since operations on numeric types
uniformly propagate the tainting, regardless of the order of
the operands. Variables composed by multiple substrings
behave differently, since the interleaving of user input with
different constant values yields strings with different security
properties depending on the nature and ordering of the
constants. Symbolic code execution evaluates them through

str2 = TAINT

str1 = 'bar'

num = 8

Static Taint AnalysisPHP Source Code

foo($A,$B,$_GET['name']);

Function foo($num, $str1, $str2)

{

 if($num<10){

 print $str1."=>".$str2;

 }

}

A = 8
B = 'bar'

Tainted

A = 8
B = 'bar'

Figure 5. Taint analysis & symbolic execution across a function call. The
variables are updated by the analyzer. The print function is a sink point

resolving all the constant values known at static time and
preserving the structure of each string variable in terms of
elementary (known or tainted) substrings. Keeping track of
the full structure of the variables enables us to avoid many
false positives which are often encountered in tools which
do not take this information into account. In the example
reported in Figure 5, the Symbolic Code Execution performs
also inter-procedural analysis: the techniques adopted to
achieve this capability are reported in Section III-F. At first
the constant values 8 and ’bar’ are respectively assigned
to the variables $A and $B since they are both known
at static time. After this, the symbolic execution engine
analyzes the function foo and, recognizing that it is a user
defined one then, it jumps to the point where the imple-
mentation is contained. Following the execution flow, the
actual parameters of the function are mapped to the formal
parameters. This allows the analyzer to correctly resolve the
conditional statement present in the code block, thus taking
the branch and locating the sink point represented by the
print function.

E. Vulnerability Checking
The vulnerability checking stage exploits a database of

sink point definitions: every definition includes a vulnerabil-
ity evaluation function which is in charge to discern whether
the sink point argument may represent a threat. To provide an
accurate prediction of the sink point argument, the Symbolic
Code Execution stage examines which manipulations have
been applied to the user input. Of particular interest is a
class of functions, commonly defined as sanitizing functions,
which are able to filter dangerous patterns from the user
input. In case a sanitizing function is applied to a tainted
input, the vulnerability checking stage correctly detects no
threat for the program security The vulnerability checks are
expressed through a set of rules describing the structure of
the input strings, i.e. to each input is associated a set of
forbidden characters that must have been filtered or escaped
by the sanitizing functions. Moreover, structural patterns of
the input are evaluated to match the ones which practically
permit to exploit a vulnerability. The use of a program-wide
history of the variables and the information on the control
flow extracted through Symbolic Code Execution allows
Codeminer to locate complex vulnerability patterns which
are ignored by tools performing only local analysis of the

code. The solution proposed is able to provide a thorough
checking procedure without constructing the language of
strings generated by the program at each sink point, as
done in [8] – an extremely time consuming process, where
analysis times are often hard to predict, since they depend
more on the structure of the language of string values passed
to the sink points than on the size of the processed codebase.

F. Interprocedural analysis

To analyze real world Web Applications, Codeminer
needs to track string manipulation history and taint propaga-
tion through a number of user defined function invocation.
Since a function can perform arbitrarily complex manipula-
tions of its inputs to produce an output, dataflow analysis
must be performed at inter procedural level. The PHP
programming language allows the definition of functions
either in the same file where the caller is present or in a
different one which may be included dynamically at runtime.
In the first case, it is possible to follow the control flow of
the program through the function calls and to perform the
symbolic execution of its statements . In the second case, the
program needs to perform a simulated execution to construct
the correct inclusion tree of the files within the application
codebase. After the inclusion tree has been built, the analyzer
evaluates the functions with the same method employed for
the ones present in the same file. This technique, employed
in both Symbolic Code Execution and Static Taint Analysis,
enables a thorough exam of the whole codebase, thus raising
the effectiveness of the tool over those that consider each
source file separately.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our approach, we
have implemented the framework described in Section III
in the Codeminer tool. We compare the performance of
our tool with two well-known competitors, the “Pixy” [9]
open-source tool and the commercial “Static Code Analyzer
v5.1” (SCA) tool, provided by Fortify [10]. 6 Pixy is one
of the very few open-source tools in the field, while SCA
is one of the leading proprietary solutions, and represents
an industry-strength term of comparison. The experiments
have been performed on an Intel Core2 Quad clocked at
2.33 GHz with 4 GB of main memory and a Windows-XP
OS. The tool we developed, Codeminer, employs the PHP
parser developed by Y. Minamide [3]. It is implemented in
OCaml, and supports the extension of its knowledge base by
means of runtime-loaded OCaml modules. External OCaml
modules are used to implement the extensibility of the fol-
lowing features: (i) modelling the semantics of PHP builtin
functions that cannot be directly simulated by the symbolic
execution; (ii) checking whether a tainted input value has
been sanitized, by checking whether the inputs to a sink
point trigger a specific vulnerability; (iii) monitor input val-
ues to potentially dangerous functions (e.g., a XSS detection
module would monitor print and echo). While the tool

6We used the free evaluation version of this tool

Table I
REAL-WORLD BENCHMARKS CHARACTERIZATION.

Benchmark Version # Files LoC

Mediawiki v1.6.12 537 176,801
Communitycms v0.5 87 6,565

implements a full-fledged plugin framework to allow module
development, for the purpose of the reported experimental
campaign we have developed a set of plugins focusing on the
identification of XSS and SQLI vulnerabilities. To provide
a complete evaluation of our approach and tool, we employ
two different sets of benchmark programs. The first set is
composed of synthetic benchmarks provided by the NIST
as part of the “Software Assurance Metrics And Tool Eval-
uation” (SAMATE) project [11]. Specifically, we employed
test cases 1769, 1937, 1938 and 1939, i.e. all the PHP XSS
test cases. Synthetic benchmarks are needed to check the
accuracy of the tools, especially in terms of false negatives,
which are otherwise difficult to verify on large applications.
The second set, characterized in Table I, is composed of
large real world applications including Mediawiki, which is
the foremost wiki software (employed e.g. in Wikipedia)
and Communitycms, which is a PHP/MySQL-based content
management system. Testing a vulnerability identification
suite on real world Web Applications is obviously important
to gauge its ability to process codebases that represent its
target application. However, it is also a time consuming
process, since each reported vulnerability must be manually
checked to verify whether it is a false positive or an actual
vulnerability.

Synthetic NIST Benchmarks: In the case of the SA-
MATE benchmarks, the goal is to verify that no false nega-
tives are produced. Table II reports the aggregated results of
the test. Codeminer, correctly identifies all vulnerabilities,
while producing no false negatives. The Fortify SCA tool
does produce two false negatives, but these are pointed
out in the vulnerability report as lacking input validation
(rather then as actual vulnerabilities). On the other hand,
Pixy produces two actual false negatives.

Table II
TOOLS COMPARISON USING THE SAMATE NIST BENCHMARK.

* MARKS VULNERABILITIES NOT DETECTED AS SUCH, BUT REPORTED
AS HAVING A “LOW INPUT VALIDATION” ISSUE.

Tool Vulnerabilities False False
identified Positives Negatives

Codeminer 8 0 0
Pixy 6 0 2
SCA 5.1 6 0 2*

Real-World Applications: Table III reports the compari-
son among the three selected tools on the set of benchmarks,
not taking into account indirect vulnerabilities (i.e., those
depending on tainted query responses rather than tainted
input) in the case of SCA, as our tool does not currently
implement indirect vulnerability identification. It can be
easily seen that Codeminer correctly identifies the same
vulnerabilities as the other tools, but produces a lower

amount of false positives. Note that, since verifying false
positives is time expensive (and therefore costly in the
applicative scenario), this reduction has a major impact on
the usability of the tool. Moreover, Codeminer is much faster
than its competitors, allowing it to scale better to both very
small and very large target codebases.

Table III
TOOLS COMPARISON USING REAL WORLD WEB APPLICATIONS

Benchmark Tool Time Vuln.s (False Pos.)
[s] XSS SQLI

Mediawiki
Codeminer 34 3 (0) 0 (0)
Pixy 1093 3 (55) 0 (0)
SCA 5.1 374 3 (0) 0 (0)

Communitycms
Codeminer 0.88 3 (0) 2 (0)
Pixy 33 3 (6) 2 (0)
SCA 5.1 111 3 (2) 2 (0)

V. RELATED WORK

Su and Wassermann developed security analysis tools
focusing on scenarios similar to those considered in this pa-
per [8], [12], and starting from the same PHP code analysis
infrastructure by Minamide [3]. Their work is the closest
to our own, especially the approach to SQLI detection
presented in [8]. With respect to [8], we do not rely on the
computationally costly query grammar generation, but on a
much faster symbolic execution, which allows us to analyze
large applications with significant database interaction in few
minutes, which favorably compares to the analysis times of
more than 3 hours reported for the same applications in [8].
Our approach, being based on checking that illegal strings
cannot be passed through the sink points rather than ensuring
that only legal strings reach them, cannot provide soundness
guarantee. However, when comparing the experimental re-
sults on the same application we see that there is no loss
of precision in practice – i.e., the Codeminer tool is always
able to detect the same vulnerabilities as the tool proposed
in [8]. Pixy [9] is one of the very few open source static
analysis tools, and focuses on detecting XSS vulnerabilities.
We compare directly to it, showing that we manage to
obtain higher precision (both in terms of false positives
and false negatives) with analysis times lower by almost
one order of magnitude. The MiMoSA [13] tool (based on
Pixy) covers both SQLI and XSS, focusing on attacks that
leverage the interactions among several modules in the Web
Application and considering as tainted the output of database
queries. Our Codeminer tool addresses the first issue, but
currently does not consider any saved value – though the
issue is orthogonal and our tool could be extended to cover
it. Xie and Aiken [14] use an approach to taint analysis
that is, like ours, based on symbolic execution and dataflow
analysis. However, they compute, for each basic block, a
taint/untaint function that only takes into account known
sanitization functions, which have the effect of cleaning the
values returned from the input tainted values, thus missing an
important degree of precision in identifying different kinds
of vulnerabilities.

VI. CONCLUSION AND FUTURE WORK

We presented a methodology and tool, Codeminer, for
the static analysis of code to identify vulnerabilities. Its key
feature is the ability to accurately track the manipulation
history of each string parameter passed to a sink point,
allowing the vulnerability checkers to exploit accurate in-
formation on the structure of it. Codeminer can be used
to identify most major vulnerabilities, and plugins for the
identification of SQLI and XSS vulnerabilities have been
developed and evaluated, proving that Codeminer is faster
and more effective than its main competitors, both open-
source and commercial. The work can be extended with new
plugins to provide a coverage of more vulnerability classes.

REFERENCES

[1] D. Stuttard and M. Pinto, The web application hacker’s
handbook: discovering and exploiting security flaws. Wiley,
2007.

[2] Fortify, “Rough auditing tool for security,” http://www.fortify.
com/security-resources/rats.jsp.

[3] Y. Minamide, “Static approximation of dynamically generated
web pages,” in WWW ’05: Proc. 14th international conference
on World Wide Web. 2005, pp. 432–441.

[4] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and
runtime protection,” in WWW ’04: Proc. 13th international
conference on World Wide Web. 2004, pp. 40–52.

[5] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “De-
tecting format string vulnerabilities with type qualifiers,”
in SSYM’01: Proc. 10th conference on USENIX Security
Symposium. 2001, pp. 16–16.

[6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., 1986.

[7] T. W. Reps, A. Lal, and N. Kidd, “Program analysis using
weighted pushdown systems,” in FSTTCS, 2007, pp. 23–51.

[8] G. Wassermann and Z. Su, “Sound and precise analysis
of web applications for injection vulnerabilities,” in PLDI
’07: Proc. 2007 ACM SIGPLAN conference on Programming
language design and implementation. 2007, pp. 32–41.

[9] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analy-
sis for static detection of web application vulnerabilities,” in
PLAS ’06: Proc. 2006 workshop on Programming languages
and analysis for security. 2006, pp. 27–36.

[10] B. Chess, “Fortify 360 whitepaper,” http://www.fortify.com.

[11] NIST, “SAMATE Reference Dataset,” http://samate.nist.gov/.

[12] G. Wassermann and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in ICSE ’08: Proc. 30th int’l con-
ference on Software engineering. 2008, pp. 171–180.

[13] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna,
“Multi-module vulnerability analysis of web-based applica-
tions,” in CCS ’07: Proc. 14th ACM conference on Computer
and communications security. 2007, pp. 25–35.

[14] Y. Xie and A. Aiken, “Static detection of security vulnera-
bilities in scripting languages,” in USENIX-SS’06: Proc. 15th
conference on USENIX Security Symposium. 2006.

