Countermeasures Against Fault Attacks on Software
Implemented AES: Effectiveness and Cost

Alessandro Barenghi
DEI — Dipartimento di
Elettronica e Informazione
Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy

barenghi@elet.polimi.it

Gerardo Pelosi
DEI — Dipartimento di
Elettronica e Informazione
Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy

pelosi@elet.polimi.it

ABSTRACT

In this paper we present software countermeasures specifi-
cally designed to counteract fault injection attacks during
the execution of a software implementation of a crypto-
graphic algorithm and analyze the efficiency of these coun-
termeasures. We propose two approaches based on the inser-
tion of redundant computations and checks, which in their
general form are suitable for any cryptographic algorithm.
In particular, we focus on selective instruction duplication
to detect single errors, instruction triplication to support er-
ror correction, and parity checking to detect corruption of
a stored value. We developed a framework to automatically
add the desired countermeasure, and we support the pos-
sibility to apply the selected redundancy to either all the
instructions of the cryptographic routine or restrict it to the
most sensitive ones, such as table lookups and key fetch-
ing. Considering an ARM processor as a target platform
and AES as a target algorithm, we evaluate the overhead of
the proposed countermeasures while keeping the robustness
of the implementation high enough to thwart most or all of
the known fault attacks. Experimental results show that in
the considered architecture, the solution with the smallest
overhead is per-instruction selective doubling and checking,
and that the instruction triplication scheme is a viable al-
ternative if very high levels of injected fault resistance are
required.

Luca Breveglieri
DEI — Dipartimento di
Elettronica e Informazione
Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy

brevegli@elet.polimi.it

Israel Koren
Department of Electrical &
Computer Engineering
University of Massachusetts
Ambherst MA 01003, USA
koren@ecs.umass.edu

Francesco Regazzoni

UCL Crypto Group, Université

Catholique de Louvain

ALaRI — University of Lugano

Via G. Buffi 13, CH-6904
Lugano, Switzerland

regazzoni@alari.ch

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]:

Microprocessor/microcomputer applications; C.5.3 [Computer

System Implementation]: Microcomputers—portable de-
vices; E.3 [Data Encryption]: Standards (AES)

General Terms
Security

Keywords
Side-Channel Attacks, Fault Attacks, Countermeasures

1. INTRODUCTION

Embedded systems now constitute the largest segment of
the electronic consumer market. Such a position was gained
thanks to their diffusion in our everyday life, in diverse ap-
plications such as fuel injection in cars, access control sys-
tems and smart-cards. Many of these applications require
the use of cryptographic algorithms to secure the data that
they process. The widespread use of security-sensitive em-
bedded systems brings up new design challenges. Although
the traditional design objectives such as power consumption,
memory usage, real time performances and reconfigurability
continue to be important, the use of embedded systems for
critical functions makes security one of the most significant
requirements of the system design.

Among the possible attacks proposed in the past, the ones
which target the physical implementation of the crypto-
graphic algorithm are the most dangerous, since they are
often easy enough to be successfully carried out. Fault injec-
tion attacks, in particular, have proven to be a very effective
and relatively inexpensive way to retrieve the secret infor-
mation processed by electronic devices. In a typical fault
attack scenario, the adversary injects a number of faults
during the computation of a cryptographic routine and then
analyzes the faulty outputs to derive the secret key of the
cipher. Recent works have improved this technique through



significantly reducing the effort required to mount a fault in-
jection attack, thus raising the threat level posed by them.

The results presented in [4, 15] have provided key insights
into how to induce faults through the use of reasonably cheap
equipment and simple workbenches by varying the feeding
voltage of an ARM-based device, resulting in predictable
corruptions of the values loaded from the memory. This kind
of faults can be injected with almost no knowledge about the
implementation details of the cipher and should therefore, be
regarded as particularly dangerous. Through the use of more
sophisticated workbenches (e.g., laser injection stations [17]
or timed EM-pulses [1]) it is also possible to inject errors
into a device in a time accurate way. This kind of attack,
albeit as viable as the previous one, requires a higher level
of technical knowledge and more expensive equipment and
is therefore, regarded as realistically applicable only in cases
where highly valuable goods are at stake. In [3] it was shown
that widely deployed embedded processors can be attacked
through judiciously lowering the processor’s supply voltage.
The induced faults can be injected with very high precision
into instructions which fetch data from memory and then,
through exploiting the resulting faulty ciphertexts, the se-
cret key of a cipher can be easily inferred. A wide range of
fault injection techniques have been discussed in [2], which
provides a comprehensive summary of the technological pos-
sibilities available to a want-to-be attacker.

Manufacturers of embedded devices developed a large va-
riety of hardware countermeasures that are incorporated
into the design to counteract specific types of physical at-
tacks [18]. One important group of such countermeasures
relies on the use of sensors and filters such as anomalous
frequency detectors, anomalous voltage detectors, or light
detectors. Commonly used countermeasures include ran-
domized clock to achieve an unstable internal frequency,
insertion of dummy random cycles, and the use of active
and passive shields to protect the internal circuits. Another
kind of countermeasures doubles the hardware resources to
perform the same computation in parallel or use the same
components to recompute the results twice. This approach
however, has not been widely adopted since it proved to be
expensive and not fully satisfactory with respect to advances
in the techniques used to carry out the attacks.

The adoption of pure hardware-based countermeasures has
several drawbacks. Highly reliable countermeasures turn
out to be expensive and usually not easily applicable to a
wide range of platforms, while moderately priced counter-
measures only detect specific attacks. Since the develop-
ment of new fault attacks is a continuous threat, detection
of currently known forms of physical tampering is not suf-
ficient against future developments. Thus, most hardware-
based countermeasures cannot guarantee an effective error-
prevention behavior with satisfactory cost vs. performance
tradeoffs.

Software countermeasures, in contrast, can benefit from both
easier deployment and potentially better cost to performance
ratio, and thus constitute an essential component in at-
tempts to counteract as many different kinds of attack as
possible.

In this paper we present a methodology to introduce a tai-
lored per-instruction redundancy in the Advanced Encryp-
tion Standard (AES) algorithm: the most widely deployed
symmetric block cipher. Our countermeasures target soft-

© 00 N0 s W N

10

ware implementations of AES running on any ARM plat-
form from ARM7 (ARMv3 architecture) onwards, thus en-
compassing the most commonly used processor in embedded
devices in the last 16 years. The proposed countermeasures
take into account the main memory architecture of the chip,
and can be applied even when the cipher source code is not
available, thus reducing the deployment cost.

The paper is organized as follows. Section 2 provides a brief
summary of the AES block cipher chosen as a case study and
describes the target architecture. Section 3 presents the pro-
posed countermeasures, and Section 4 reports the results of
the experimental campaign conducted in order to ascertain
the effectiveness of the proposed methods. Section 5 surveys
the related work and Section 6 presents our conclusions.

2. APPLICATION SCENARIO

In this section we briefly describe both the cipher of choice
and the target architecture used to validate the proposed
countermeasures.

2.1 AES Overview

Our proposed countermeasures against fault attacks support
a tunable level of protection, thus providing a full spectrum
of trade-offs between the level of protection and the imple-
mentation overhead. We focus here on the AES cipher [7],
which is employed in a wide range of devices. The AES ci-
pher executes a number of round transformations on the in-
put plaintext, where the output of each round is the input to
the next one. The number of rounds r is determined by the

Algorithm 2.1: AES Encryption

Input: p, plaintext block; k, cipher key
Output: c, ciphertext block
begin
(O kW kM) « KEySCHEDULE(K)
¢ « ADDROUNDKEY(p, k(©)
foreach i € {1,...,7} do
¢ < SUBBYTES(c)
¢ « SHIFTROWS(c)
¢ « MixCoLUMNS(c)
¢ « ADDROUNDKEY (¢, k)
¢ < SUBBYTES(c)
¢ < SHIFTROWS(c)
¢ « ADDROUNDKEY(¢, k(M)
return c
end

key length: a 128-bit key uses 10 rounds, a 192-bit key uses
12 and a 256-bit key uses 14. In software, AES can be imple-
mented using only bitwise xor operations, table-lookups and
1-byte shifts [7]. Each round is composed of the same steps,
except for the first where an extra addition of a round key is
inserted, and the last where the (MIXCOLUMNS) operation is
skipped. Each step operates on 16 bytes of data (referred to
as the internal state of the cipher) generally viewed as a 4x4
matrix of bytes or an array of four 32-bit words, where each
word corresponds to a column of the state table. The four
round stages are: ADDROUNDKEY (xor addition of a sched-
uled round key), SUBBYTES (byte substitution by a lookup
table (S-box)), SHIFTROWS (cyclical shifting of bytes), and
MIXCOLUMNS (linear transformation which mixes column



state data). Given the cipher key k, the KEYSCHEDULE pro-
cedure outputs r+1 round subkeys, with each subkey being
16 byte wide. Algorithm 2.1 shows the complete encryption
process. The encryption procedure is amenable to several
software implementations which trade-off memory and com-
putational resources in order to obtain the best performance
for the given architecture. Specifically, the different steps of
the round transformation can be combined into a single set
of table lookups, allowing for very fast implementations on
processors having word length of 32 bits or more [7]. Denote
by a;, j, 4,5 € {0,1,2,3}, the generic element of the state ta-
ble, by a the value of a byte variable, by S|0, ..., 255] the 256
bytes of the S-box table and by o a GF(2®) finite field mul-
tiplication [7]. Let To, 11, T> and T3 be four lookup tables,
each viewed as a sequence of 256 32-bit words, containing
results from the round operations as follows:

Tola] = [ Sla] 0 02; Sla]; Slal; S[a] 003 ]
Ti[a] = [ Sla] 0 03; S[a] 0 02; Sla]; S[a] ]
Tola) = [ Sla]; Sla] o 03; S[a] o 02; S[a] ]
Tsla] = [ Slal; Slal; Sla]o03; Sla] 002 ]

These tables are used to compute the round operations as a
whole, as described by the following equation, where k; is the
j-th word of the expanded key and A;=(ao,;,a1,;,a2,,0as,;)
is the j-th column of the state table considered as a single
32-bit word (with the simplified notation: A; = A; mod 4,
Qi 5 = A4, j mod 4)1

Aj = Tolao,;] @ Tilar,j—1] ® Talaz,;—2] ® Tslas,j—3] ® k;

The four tables Ty, T1, T> and T3 (called T-tables from now
on) use 4 KB of storage space and their main goal is to avoid
performing the MixCoLUMNS and INVMIXCOLUMNS trans-
formations as these operations, in the original definition of
Rijdael algorithm, perform Galois Field multiplications by
fixed constants which map poorly to general-purpose pro-
cessors in terms of performance. Notably, in the final round
of the encryption there is no MiIxCOLUMNS operation, and
the KEYSCHEDULE algorithm requires pure substitution op-
erations. While these facts could represent an impairment
to the use of T tables, it is possible to extract efficiently the
S table through proper masking of the 7" tables. Since the
T-tables may be derived also through rotating each word
of Ty by @ bytes, T;[a] = ROTBYTE(To[al, i), ¢ € {0,...,3},
in order to reduce the active memory footprint used within
each round, every column of the state table may also be
computed as:

Aj =Ty [ao)j] D ROTBYTE(TO [alyjfl], 1)@
®ROTBYTE(Ty[az,;—2],2) ® ROTBYTE(To[as,j—3],3) B k;

This variation reduces the lookup tables to a single 1 KB
one, thus lowering the burden on the caches, while incurring
a penalty of only three extra rotations per column per round
with respect to the four T-tables implementation. Decryp-
tion requires different tables from those used by the encryp-
tion. Therefore, an AES implementation able to perform
both encryption and decryption may require up to 8 KB
of memory, which may extend to 16 KB if the last round
operations are implemented using ad-hoc tables. When em-
ploying general-purpose processors, endowed with large D-
caches, the T-table implementation is more efficient since the

memory access latency is lower than the computation time
that would be required in place of each T-table lookup. On
the other hand, in cache constrained environments a valid
alternative to the use of T-tables is the computation of the
entire AES rounds on the processor, memorizing only the
S-box and the inverse S-box tables needed to perform the
substitution operations.

Another downside of employing D-caches, regardless of the
constrains on the size of the chip, is represented by cache
timing attacks to cryptographic algorithms. This kind of
attack makes it possible to infer from the loading times of
a value, its position in the main memory, and thus obtain
information on the memory access patterns of a cipher. This
in turn has been demonstrated to be sufficient for breaking
AES in [20], and thus the employment of cache should be
either avoided or carefully regulated during the execution of
this algorithm.

2.2 Target Architecture

The target architecture to validate our countermeasures is
the ARM family of processors. Our proposed countermea-
sures are employable on every ARM processor starting from
ARM7 (ARMv3 architecture).

ARMv3 is a load-store RISC machine, where every instruc-
tion is executed in one clock cycle, and may be conditioned
by a flag in the program status word. This feature was
introduced in order to compensate for the missing branch
predictor which was introduced only later into ARMS pro-
Cessors.

The load instructions are not bound to be executed in a
single cycle; instead, they may stall the pipeline until the
information is retrieved from the main memory. The mem-
ory latencies have a broad range due to the wide field of
applications in which the ARM processor is deployed.

The RISC architecture and the fully predicated instructions
(which are used in place of small decisional constructs) make
the ARM architecture suitable for use in low power or mem-
ory constrained environments. This has made them domi-
nant in the mobile and embedded electronics market.

Thanks to its high power efficiency, the ARM architecture
has been lately employed also in mobile multimedia enabled
platforms. This, in turn, has lead to an increase in the
computing power and memory demand from the platform,
leading to the formation of the same CPU-Memory speed
gap experienced in high-end microprocessors.

In order to cope with the increasing demands for higher
performance, the latest ARM-based platforms are split, ac-
cording to the target use, into two families, Cortex-A and
Cortex-M, while retaining full binary compatibility. Cortex-
A based platforms target high-end mobile multimedia de-
vices, and are often endowed with two levels of caches to cope
with the load latency of high capacity but slow off-chip mem-
ory. The L1 cache is split into two halves, which are used
as dedicated instruction (I-cache) and data cache (D-cache),
while the L2 cache is unified for both data and instructions.
The Cortex-M family targets the microcontroller and highly
energy constrained environments. For this CPU family, the
Cortex-M3 reference manual from ARM' suggests the use

!Cortex-M3 Technical Reference Manual (July 2010):
http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0337e/DDIO337E_cortex_m3_ripl_trm.pdf



of tightly coupled memories: i.e., small amounts of SRAM
integrated on the same die with the microprocessor, and
characterized by very low access latencies (one or two clock
cycles). Embedding the memory in the same chip elimi-
nates the need for caches since the main memory is imple-
mented with cache-like timing features. Furthermore, the
power consuming circuits driving the caches are not needed.
While typical memory access latencies for chips having on-
die integrated memory range from one to two clock cycles,
off-chip DRAM memories tend to require up to 64 CPU
clock cycles to fetch the data.

The ARM architecture has 16 general-purpose 32-bit regis-
ters. Although the architectural specification does not im-
pose any restriction on their usage, the standard ARM ABI
interface mandates the use of the last three registers (r13-
r15) for keeping the context of the running program (stack
pointer, link register and program counter). Moreover, the
content of ri2 is not guaranteed to be preserved between
function calls, thus acting as a scratch register. In order
to provide fast shifting and rotation of loaded values, one
of the two loading lines for the ALU has a 32-bit barrel
shifter able to act without delaying the loading of the value
from a register into the ALU. This implies that it is possible
to perform computations directly with a shifted or rotated
operand without losing an extra clock cycle.

3. COUNTERMEASURES

In this section we explore the incorporation of error detect-
ing and correction techniques into the AES algorithm im-
plemented in software and executed on the ARM platform
without modifications to either the Application Binary In-
terface (ABI) or the underlying architecture.

The most straightforward countermeasure against fault at-
tacks is to run the same cryptographic algorithm twice for
each input, and subsequently check if the results match.
This technique may be extended to triplicating the execution
of the algorithm in order to achieve single-error correction
capabilities by applying majority voting to the results. The
duplication method works well against naturally occurring
faults, but may be less effective against maliciously injected
ones. In fact, a motivated attacker may be able to bypass
these countermeasures through injecting two faults, one for
each execution of the algorithm. With the currently avail-
able fault injection technologies it is possible to induce faults
with very accurate timing during the execution of a soft-
ware routine [14]. Indeed, it is possible to inject faults with
a single clock cycle accuracy in different runs of the same
algorithm, while it is practically infeasible to inject faults in
subsequent instructions with most of the currently available
fault injection techniques. We note that two fault injec-
tions in two subsequent instructions could be still achieved
by using two synchronized laser injection apparatuses and a
semi-transparent mirror. This would require a highly com-
petent attacker with considerable means, and thus would be
viable only against very valuable targets. On the other hand,
EM pulses, supply voltage alterations, clock glitching tech-
niques [2,16] and other low cost fault injection techniques
do not possess the precision required to inject such faults.

In order to thwart attacks that target the same instruction
during two consecutive executions of the same code, we pro-
pose to apply redundancy at a finer grain, i.e., at the single
instruction level. We consider three ways of inserting redun-

dant computations and the subsequent checking: instruction
doubling to detect errors, instruction triplication to add er-
ror correction capabilities, and computation of parity bits
to be checked against stored values. The latter counter-
measure though, may only be applied to load operations in
our scenario since it requires the expected parity bits to be
computed in advance for the result of the protected oper-
ations. In order to provide a fair comparison, we evaluate
both a full instruction duplication/triplication strategy, and
the protection of the load instructions only. These counter-
measures can be either applied to the whole cryptographic
algorithm or only to the parts that are known to be vul-
nerable to attacks (Selective Insertion) in order to reduce
the computational overhead. The advantage of applying the
selected scheme to the entire algorithm is the greater ease
of application, since the insertion of the countermeasure can
be done directly into the code obtained by disassembling the
executable object code, without knowing any details about
the algorithm implementation, and with no need to take
into account the optimization strategies of the compiler to
prevent the removal of redundant operations. The only is-
sue in applying per instruction redundancy is represented
by the “Branch and Link” ARM instruction, since it could
create duplicated stack frames. This problem can be solved
through the use of inline functions to implement the algo-
rithm, thus avoiding the generation of the aforementioned
instruction by the compiler.

The selective insertion technique requires some knowledge
of the encryption program structure in order to locate the
sensitive parts which need the application of the counter-
measure. For example, in the considered AES case study,
all the known attacks focus either on the last three round
operations or the first subkey addition [3,8,9,12,13,15,19].
Therefore, when either the algorithm structure or the source
code is known, it is possible to protect the implementation
of the algorithm with a reduced overhead.

3.1 Instruction Duplication (ID)

The first method examined is duplicating the execution of
certain (or a specific class of) instructions and storing the
second result into a different register of the CPU. This is
possible in our implementation since the AES algorithm uses
only 9 registers (in our binary r1-r9) of the ARM architec-
ture, thus leaving 4 registers available for our purposes (r0,
r10-r12). After repeating the instruction, the results are
compared, and if a mismatch is detected, the inserted code
jumps to an error management routine which may either sig-
nal the error or fill the state of the computation with random
numbers to avoid information leakage.

The following code sample illustrates the insertion of the ID

countermeasure to protect the load of a value in r4 from a
memory location whose address is contained in r7:

1ldr r4, [r7];
1ldr r12,[r7];
cmp ri2,r4;

W NN -

bne <error>;

This kind of countermeasure fails to detect two types of
faults: two identical faults injected in each of the payloads



of the load operations, and a single fault injected in a load
and an instruction skipping fault which allows to bypass the
branch instruction (bne) after the comparison.

3.2 Instruction Triplication (IT)

The second method (IT) repeats an instruction three times
and stores the two extra results into two unused registers.
In the following code snippet the protected instruction is an
exclusive-or (eor) between r1, r2 with result stored in r4:

be stored either in a bit-packed form (which requires extra
operations to decode) or in a sparse representation (i.e., 1
bit per byte/word), which wastes a considerable amount of
memory (e.g., an entire byte is reserved for storing a single
parity bit).

The following code snippet represents a straightforward way
to compute the parity bit of a value contained in r4, and
referenced by r1 in order to check it against a precomputed
value stored in memory at the address contained in r7.

1. eor ri12,r12,r12; 8. eoreq ri12,r12,#2;
2. eor r10,r1,r2; 9. cmp r10,r0;

3. eor r0,rl1,r2; 10. eoreq ri12,r12,#4;
4. eor r4,rl1,r2; 11. cmp ri12,#0

5. cmp r4,r10; 12. beq <error>;

6. eoreq r12,r12,#1; 13. cmp ri2,#4;

7. cmp r4,r0; 14. moveq r4,r0;

This technique employs a fourth register, r12 to record the
effects of the correctness checks (lines 5-10) and determine
whether to correct a single error (lines 13-14), detect two
errors (lines 11-12) or leave the result unchanged. The eor
operation between ri1, r2 is performed thrice and the three
results are stored in the target register (r4) and in two
scratch pad registers (r10, r0). The algorithm then pro-
ceeds to check the equality of the values pairwise and stores
the result of the comparison as a single bit flag in register
r12 which was zeroed at the beginning. To save comparison
instructions, the previous code snippet checks only if either
the first value (which has already been loaded into the target
register) is faulty or not, and eventually corrects it without
taking care to correct the values in the two scratch pad reg-
isters.

An attacker may attempt to thwart the instruction tripling
countermeasure by injecting two identical faults into two of
the three sensitive operations. This implies that the attacker
must be able to interfere with the execution of two instruc-
tions, which are only a single clock cycle apart, in exactly
the same way. Another alternative is to inject a fault dur-
ing the operation that will set the correct output register
(i.e., not one of the redundant ones; r4 in the example) and
subsequently skip both the branch to error instruction and
the last moveq instruction, which would restore the correct
result. This would mean being able to inject one data alter-
ing fault and two instruction skip faults within an 11 clock
cycles timeframe, with the middle fault being 2 clock cycles
apart from the last.

3.3 Parity Checking (PC)

The third technique considered (PC), is a tabulated parity
bit to check the consistency of values fetched by a load in-
struction. This technique is not readily applicable to generic
arithmetic/logic operations since it requires the prediction
of the resulting parity bit prior to the instruction execution.
Another disadvantage of employing parity in software is the
fact that the parity bit related to each protected value must
be computed from the corresponding word, at the expense of
additional computation steps. Moreover, the storage of par-
ity bits is troublesome in software since the parity bits might

1. 1ldr r4,[ri]; 7. 1sr r0,r12,#1;
2. mov ri12,r4; 8. eor r12,r12,r0;
3. 1lsr r0,r4,#4; 9. and ri12,r12,#1;
4. eor ri12,r12,r0; 10. 1dr r6, [r7];

5. 1sr r0,r12,#2; 11. cmp ri12,r6;

6. eor r12,r12,r0; 12. bne <error>;

The protected value in r4 may either correspond to a byte
of the lookup table used in the AES implementation (S-box
or T-table) or to a byte of the unrolled key. The code com-
putes the parity bit through xoring a value obtained from a
shifted copy of the one whose parity is checked. The parity
value is accumulated in a scratch pad register (r12) and em-
ploys a temporary register (r0) to store the correctly shifted
copy of the value whose parity is computed. After all the
bits of the byte are added, the final value is masked with a
single bit mask and compared to the correct parity which is
loaded from the memory at line 10.

Since the ARM architecture has a barrel shifter capable
of shifting/rotating one of the two operands of an arith-
metic/logic instruction, it is possible to skip altogether the
use of the temporary register and considerably reduce the
number of instructions needed to compute the parity as
shown in the following code:

1ldr r4,[ri1];

eor ri12,r4,r4, LSR #4;
eor r12,r12,r12,LSR #2;
eor ri12,r12,r12,LSR #1;
ri2,ri12,#1;

1dr r6, [r7];

cmp ri2,r6;

00 N o O W N
Q

bne <error>;

As for the achieved fault coverage, parity codes are capable
of detecting half of all possible faulty results of the operation
they are protecting since any multi-bit injected fault with an
even number of bit flips will not be detected.

An attacker can bypass the protection scheme by injecting
faults both during the load operation and during either the
branch instruction after the comparison or the loading of the
correct parity value.



3.4 Fault Coverage Summary

Table 1 summarizes the fault detection capabilities and fault
coverage of the previously described approaches. An impor-
tant observation emerging from the table is that counter-
measures that provide full coverage of faults, also require a
higher temporal precision from a potential attacker in order
to be thwarted. In particular, the second fault should be in-
jected during a specific clock cycle that is only 3 to 10 cycles
apart from the first fault.

Such a tight timing is a very difficult to achieve with the cur-
rent fault injection techniques, which require a non negligible
amount of time to reset the fault inducing means (laser, EM
and clock glitcher apparatuses are characterized by large ca-
pacitors which require a long time to be recharged) [16].

Table 1: Fault coverage and minimum required
faults to subvert a countermeasure

Counter Fault Instr. Skips Instr.
-measure Detection [%)] Required Distance
ID 100 2 4
IT 100 2 11
PC 50 1 6

Since this resetting time greatly exceeds the required 10
clock cycles, even for implementations running at very lim-
ited clock rates, the proposed countermeasures may be re-
garded as safely preventing the successful injection of faults
for all the present implementations.

A key point of employing a parity bit as protection mecha-
nism is that it cannot detect errors that were inserted during
computations, thus leaving a possible target for attackers.
However, the low cost and easy to set technique described
in [4] is only able to inject faults in the load operations exe-
cuted on an ARM architecture and thus would be detected
by a parity bit check.

The difficulty of injecting two or more faults within a period
of 11 or fewer clock cycles does not exist when the entire code
is duplicated (or triplicated) and only the final results are
compared. Such replication provides a large time gap be-
tween the two fault injection points, allowing the attacker
to properly reset the fault injection equipment.

3.5 Effects of the Caches

Many high-end ARM-based embedded systems (see Section
2.2) integrate one or two levels of cache units in their de-
sign. This architectural feature has a direct impact on the
fault injection countermeasures since it implies that the er-
roneous result of an operation may be reused by the CPU if
the wrong computed or loaded value is held in a cache.

This is of particular concern when load instructions are repli-
cated since inducing a fault in a single load instruction im-
plies that all the subsequent ones will be using the same
faulty value held in the data cache. Such a side effect would
nullify the load replication countermeasures since all the
comparisons would act on the same faulty value and fail
to detect the error. This side effect (due to the presence of
a cache) may also affect the technique that duplicates the
full execution of the AES algorithm, since the round key
and S-box values are preserved in the data cache during the
duplicated executions.

The most straightforward solution to this problem is to dis-
able the cache altogether. This can be done at runtime for
the entire duration of the encryption algorithm, but will re-
sult in a substantial performance penalty.

An alternative solution is the use of per-line cache invalida-
tion, which is available in the ARM architecture through the
mcr instruction. Through selective invalidation of the cache
lines containing the values which have just been loaded, it is
possible to avoid storing faulty data in the cache. Since only
the duplicated instructions would require cache invalidation,
the other parts of the algorithm that do not need protection
can still benefit from the presence of the cache.

Another advantage of flushing the cache lines containing the
sensitive values is the intrinsic protection against the tim-
ing attacks mentioned in [20], since it is no longer possible
to make any inference regarding the position of the values
loaded with respect to the loading times within the algo-
rithm.

The invalidation of cache lines would require additional in-
structions that must be placed right before every sensitive
instruction in the code, in order to warrant a fresh load from
main memory. Thus, all the aforementioned listings will be
extended by a number of mcr instructions that is equal to
the number of 1dr instructions performed, since the whole
inner state of the AES cipher is kept in the registers, which
in turn implies that there are no memory writeback oper-
ations which need to be taken care of. It is important to
notice that the traditional duplication/triplication methods
applied at the algorithm level will also need to flush the
cache between the repeated executions of the algorithm, oth-
erwise they would suffer from the same problem.

In order to minimize the impact of the cache line flushes, it
is possible, if the source code of the algorithm is available,
to align all the sensitive variables to the same cache lines by
using compiler directives such as the DCACHEALIGN of GCC.
These directives, provided the cache line size is known, al-
locate the variables so that their beginning in memory is
aligned to a cache line, thus resulting in minimal trashing
of unrelated values when a cache line is flushed. Employing
this technique would reduce the performance penalty.

The following section presents the cost of the studied coun-
termeasures in both cache-endowed and cache-free environ-
ments, thus covering the entire range of embedded systems
based on ARM CPUs.

4. COUNTERMEASURES EVALUATION

In this section we discuss the efficiency of the proposed coun-
termeasures when applied either to the full cipher or to a
selected subset of only the sensitive instructions based on
known attack points. The findings in [3,8,9,12,13,15,19]
suggest that injecting a fault within the last three rounds of
the AES cipher leads to successful attacks allowing a com-
plete key recovery with as few as 6 faults for AES-256. It is
thus mandatory to protect the last three rounds in full, in
order to prevent these attacks from succeeding.

The attack in [6] addresses another fault injection technique
capable of discovering the full key through injecting single-
bit errors during the first key addition. This implies that also
the first key-load and addition must be protected against
faults. The safe-error attack in [6] consists of injecting a
fault during the algorithm execution and checking whether it



120000

TMR ——
PAR -
100000 | DMR -xeoeee 1
PAR-barrel =
None --—=--

80000

60000

40000

Execution time [cycle]

20000

1 2 4 8 16 32 64
Load cost [cycle]

(a)

40000 . . : ; .
TMR ——
L PAR - |
35000 DMR
@ 30000 PAR-barrel a |
<] None --—=--
£ 25000
(0]
1S
= 20000
c
9o
S 15000
[$]
2
3§ 10000
5000
O L L L L
1 2 4 8 16 32 64

Load cost [cycle]

(b)

Figure 2: Execution times of AES with protection of all the load instructions of the algorithm (a), and with
protection of only the instructions in the last three rounds (b)

impacts the expected result. Therefore, this attack requires
the countermeasure designer to provide an error correction
mechanism to produce a correct result regardless whether
a fault has been injected or not. Even if the AES imple-
mentation outputs a randomized value (instead of the ac-
tual faulty ciphertext) or simply signals an error without
outputting anything, the attack proposed in [6] will still be
able to extract information since it only relies on detecting
an anomaly in the correct functioning of the circuit. How-
ever, the fault injection capabilities required to mount this
attack are very high and thus, it is reasonable to consider
incorporating an error correction mechanism only if the ci-
pher is protecting significantly valuable goods.

The implementation of AES-128 used to validate our pro-
posed countermeasures is a T-table based implementation,
realized in C and compiled for the ARM9 architecture, em-
ploying release grade optimizations (-02) with GCC 4.0.2.
Since the ARM architecture provides free rotations through
the barrel shift unit, the most efficient implementation is
the one employing only a single T-table and rotating on
the fly the obtained value to get the correct 32-bit word to

2 T ;
%0 PAR ——
PAR-barre| -
TMR =
200 DMR - =

Execution time [cycle]

Load cost [cycle]

Figure 1: Execution time required to protect a sin-
gle load instruction as a function of the clock cycles
needed to fetch the value from memory (no cache
units available)

Table 2: Countermeasures overhead per single in-
struction to be protected

Counter Instruction load No. of extra
-measure Count Count Registers
None 1 1 0
ID 2 1
IT 14 3 3
PC 12 2 3
PC-barrel 8 2 2

update the state of the cipher, as described in Section 2.1.
The compiled object was subsequently disassembled and the
countermeasures were introduced directly into the assembly
listing.

Table 2 presents the overhead, expressed in number of clock
cycles, needed for each countermeasure to protect a single
instruction. The overhead has been split into individual
components, namely, the extra computational instructions
inserted, the additional loads and the number of scratch
registers required. The results show that employing the IT
scheme has the highest computational cost. On the other
hand, it is the only scheme that provides error correction,
while the others can only detect a fault during the execution.
The ARM code for parity checking is more computationally
intensive than the simple instruction doubling, and has the
additional drawback of not being applicable to computa-
tional instructions.

Figure 1 shows the execution time needed to protect a single
load instruction as a function of the number of clock cycles
required to fetch a value from memory when no caching
mechanism is available. When a cache is available, the over-
head introduced by the insertion of cache flushing instruc-
tions amounts to a few cycles with respect to the results re-
ported in Figure 1, and will therefore have, a limited impact
on the comparison among the countermeasures. The costs
range from an ideal of a single cycle (which may happen in
case the value is held in tightly coupled memories, typical
of small embedded systems) to 64 cycles for slow off-chip
memory. From the figure one can notice that the ID scheme



is uniformly less expensive than the parity schemes regard-
less of the latency of the memory, while providing the same
error detection capability. The IT scheme has the highest
overhead among all the countermeasures, and the overhead
with respect to the parity checking remains below 40% only
for memory latencies lower than 8 cycles. This in turn im-
plies that IT is a viable choice in the case the main memory
is tightly coupled with the core.

Figures 2(a) and 2(b) depict the execution times for the
AES-128 algorithm when applying protection to every load
instruction in all the rounds, and when selectively protect-
ing only the sensitive portions of the algorithm (i.e., the
1dr instructions in the last three rounds plus the initial key
addition). The results in these two figures confirm the in-
tuition deduced from the single load overhead investigation,
suggesting ID as the cheapest fault detection scheme and
IT as a reasonably lightweight alternative if error correction
is desired and a fast memory is available. The comparison
between applying the countermeasure to all the load instruc-
tions (Figure 2(a)) and the selective application to the sensi-
tive load instructions only (Figure 2(b)) shows an advantage
by a factor of three in terms of clock cycles overhead. The
slowdown of the instruction tripling method with respect to
the ID and PC methods is constant over the whole memory
latency range.

140000 ‘ ‘ |
Full-IT ——
Full-ID - D
120000 3 Round-IT -
3 Round-ID =
100000 None --=-—-

80000

60000

40000

Execution time [cycle]

20000

Load cost [cycle]

Figure 3: Execution times of AES with protection
applied to every instruction

Figure 3 shows the execution time of the AES-128 algorithm,
and compares the impact of the instruction doubling and the
instruction tripling countermeasures when applied to every
instruction of the algorithm or only to the instructions be-
longing to the last three rounds. The figure clearly demon-
strates that focusing on the sensitive portions of the algo-
rithm allows to achieve up to a 70% improvement compared
to the solution that blindly protects every instruction.

Moreover, as shown in Table 3, the execution time of a
protected implementation does not significantly exceed the
slowdown experienced when executing the algorithm twice
or thrice, respectively. Table 3 summarizes the countermea-
sures proposed in this paper together with the performance
costs ensued from their application. The memory latencies
of 2 and 64 cycles were chosen among the ones considered
in the exploration since they represent two typical applica-
tion scenarios. The 2-cycle access latency is characteristic

of tightly coupled on-chip SRAMs which are able to pro-
vide fast memory access albeit only for small quantities of
it. The 64-cycle access time is a reasonable representative of
off-chip DRAM banks, employed when large memories are
required and the system design includes a full memory man-
agement unit, together with load- and write-buffers. A key
point in chips with tightly coupled memories is the fact that
they are never endowed with caches, due to the very fast
access to the main memory. This in turn implies that it is
never necessary, in that scenario, to add the cache flushing
instruction in order to avoid the faults lingering in cache.
A side effect of increasing the memory latency is the fact
that computationally intensive countermeasures will behave
proportionally better with slow memories, since the over-
head introduced by the extra operations will be dwarfed
by the large amount of clock cycles required to access the
memory. The second pair of rows in Table 3 reports the
performance cost of protecting all the instructions using ID
and IT, respectively. Albeit at a higher cost, these schemes
provide complete protection against any possible injected
fault, both in the computational instructions or during mem-
ory accesses. Of particular interest are the results obtained
when protecting the last three rounds using ID: the exe-
cution time costs are lower than those for duplication of
the whole computation, while retaining the benefits of per-
instruction consistency checking. Another noteworthy result
is for the case when IT is applied to the whole algorithm on
devices with slow memories. In this case, the overhead is
only 12% higher than triplication of the entire algorithm. It
is thus possible to apply instruction level triplication, which
has correction capabilities and provides a complete protec-
tion against all known fault attacks using all the currently
known fault injection techniques. Comparing the methods
which protect only load instructions (3rd and 4th pair of
rows in Table 3) suggests that proper selective duplication
is cheaper than all the other methods, including duplicat-
ing the entire cipher. Moreover, this scheme also provides a
stronger protection than the full algorithm duplication, as
reported in Section 3, due to the stricter bounds imposed
on the attacker capabilities. The IT scheme, when applied
only to the sensitive portions of the code, results in a reason-
ably lightweight scheme, keeping the overhead near that of
the triplication of the entire algorithm. This suggests that
IT is a viable alternative when error correction is desired,
e.g., when the attacker has powerful means and is able to
exploit the safe error attack proposed by Blomer [6]. The
slowdown introduced by the addition of the cache flushing
instructions is negligible by itself, even if a line invalidation
instruction per-load must be issued. Employing per-line in-
validation has also the advantage over more coarse methods
(whole cache invalidation) by not trashing the full contents
of the cache thus preserving the contents related to other
tasks which may be running on the same system.

5. RELATED WORK

Previous work has mostly focused on hardware implementa-
tions [2] and on solutions based on error detection codes [5,
10, 11]. Several Concurrent Error Detection (CED) tech-
niques has been adapted to the specific needs of crypto-
graphic algorithms. Every time an error is detected, the
normal execution of the algorithm is stopped to prevent the
generation of wrong outputs. As a result, the attacker is
unable to view and analyze the faulty outputs.



Table 3: Performance cost for all the proposed countermeasures schemes. * indicates the slowdowns taking

into account the cache line flushing operations

Last Three Round Protection

‘Whole Algorithm

C t

ountermeasure load cycles: 2 load cycles: 64 load cycles: 2 load cycles: 64
Algorithm Duplication - - x2.00 x2.00
Algorithm Triplication - - x3.00 x3.00
Instruction Doubling (ID) x1.83 x1.97 / x2.01* %x3.39 x2.07 / x2.10*
Instruction Tripling (IT) x4.30 %x3.15 / x3.19* %x10.63 x3.38 / x3.42*
load Doubling x1.48 x1.94 / x1.97* x2.23 x2.01 / x2.04*
load Tripling x2.82 %x2.98 / x3.02* x5.60 x3.13 / x3.18*
Parity Check (PC) x2.45 %x2.05 / x2.08* x4.68 x2.13 / x2.16*
Parity Check w/ barrel shifter (PC-barrel) x1.96 x1.99 / x2.02* x3.45 x2.07 / x2.10*

The correctness of the output is verified either by dupli-
cating the hardware circuits, repeating the computation, or
checking its value when a known input is used. These meth-
ods are quite expensive since they affect either the execution
time and/or the circuit size.

The designer must therefore, find a judicious tradeoff be-
tween the provided protection level, the efficiency of the se-
lected hardware/software solution, and the cost of the pro-
tection itself.

In [11], Karri et al. propose a CED for substitution-per-
mutation network ciphers which compares the parity of the
input with the parity of the output.

The CED scheme proposed for AES in [5] uses one parity bit
for every byte of the internal state of the algorithm. This
scheme requires a limited amount of area for its implementa-
tion but can only guarantee the detection of an odd number
of errors.

A more advanced error correction code scheme has been pro-
posed by Kulikowsky et al in [10]: the approach is based on
employing nonlinear codes to protect the non-linear opera-
tions and a linear code to protect the xor operations.

All these countermeasures require additional hardware to
be embedded into the design and are specifically tailored
to hardware implementations of AES. To the best of the
authors’ knowledge, no generic software fault attack coun-
termeasures have appeared in the open literature.

6. CONCLUSION

In this paper we have explored possible countermeasures
against fault attacks on software implementations of AES
that are based on introducing redundant computations.

Through applying instruction duplication and triplication
only to the vulnerable parts of the algorithm, we were able
to achieve full protection of the AES cipher from all the
known attacks. The instruction duplication forces an at-
tacker to inject similar faults in instructions that are less
than 11 clock cycles apart, a technical requirement which
has not been met up to now, and which requires a radical
change in the fault injection instrumentation in order to be
viable.

The selective application of the instruction duplication tech-
nique requires lower overhead than common alternatives (par-
ity bit checking or whole algorithm duplication) and can be
automatically applied to a software implementation of the

algorithm. At an additional cost, all the proposed counter-
measures can be applied to the whole cryptographic rou-
tine. This has the advantage of being possible even when
the source code is not available, thus leading to an easily de-
ployable countermeasure that does not need any additional
hardware, nor the replacement of the existing one.

The proposed instruction triplication technique is also able
to protect against safe-error attacks, since the cipher is able
to tolerate the presence of faults during the execution and
still produce the correct output. The proposed counter-
measures also provide immunity from cache timing attacks
through selective flushing of the cache lines which handle
sensitive data. Since the flushing is done at line level, other
tasks which may be running on the same system, will not
incur any performance penalties.

7. REFERENCES

[1] R. J. Anderson and M. G. Kuhn. Low Cost Attacks on
Tamper Resistant Devices. In B. Christianson,

B. Crispo, T. M. A. Lomas, and M. Roe, editors,
Security Protocols Workshop, volume 1361 of Lecture
Notes in Computer Science, pages 125-136. Springer,
1997.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The Sorcerer’s Apprentice Guide to Fault
Attacks. Proceedings of the IEEE, 94(2):370-382,
February 2006.

[3] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli,
and G. Pelosi. Low Voltage Fault Attacks to AES. In
M. Tehranipoor and J. Plusquellic, editors, HOST,
pages 7-12. IEEE Computer Society, 2010.

[4] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi.
Low Voltage Fault Attacks on the RSA Cryptosystem.
In L. Breveglieri, S. Gueron, I. Koren, D. Naccache,
and J.-P. Seifert, editors, FDTC, pages 23-31. IEEE
Computer Society, 2009.

[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and
V. Piuri. Error Analysis and Detection Procedures for
a Hardware Implementation of the Advanced
Encryption Standard. IEEE Trans. Computers,
52(4):492-505, 2003.

[6] J. Blomer and J.-P. Seifert. Fault Based Cryptanalysis
of the Advanced Encryption Standard (AES). In R. N.
Wright, editor, Financial Cryptography, volume 2742
of Lecture Notes in Computer Science, pages 162-181.



[13]

[14]

Springer, 2003.

J. Daemen and V. Rijmen. The Design of Rijndael:
AES - The Advanced Encryption Standard. Springer,
2002.

P. Dusart, G. Letourneux, and O. Vivolo. Differential
Fault Analysis on A.E.S. CoRR, ¢s.CR/0301020, 2003.
C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen,
and A. Sowa, editors, AES Conference, volume 3373 of
Lecture Notes in Computer Science, pages 27—41.
Springer, 2004.

M. G. Karpovsky, K. J. Kulikowski, and A. Taubin.
Differential Fault Analysis Attack Resistant
Architectures for the Advanced Encryption Standard.
In J.-J. Quisquater, P. Paradinas, Y. Deswarte, and
A. A. E. Kalam, editors, CARDIS, pages 177-192.
Kluwer, 2004.

R. Karri, G. Kuznetsov, and M. Gdossel. Parity-Based
Concurrent Error Detection of Substitution -
Permutation Network Block Ciphers. In Walter

et al. [21], pages 113-124.

A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh.
A Generalized Method of Differential Fault Attack
Against AES Cryptosystem. In L. Goubin and

M. Matsui, editors, CHES, volume 4249 of LNCS,
pages 91-100. Springer, 2006.

G. Piret and J.-J. Quisquater. A Differential Fault
Attack Technique against SPN Structures, with
Application to the AES and KHAZAD. In Walter

et al. [21], pages 77-88.

J.-M. Schmidt and C. Herbst. A Practical Fault
Attack on Square and Multiply. In L. Breveglieri,

S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert,

editors, FDTC, pages 53-58. IEEE Computer Society,
2008.

N. Selmane, S. Guilley, and J.-L. Danger. Practical
Setup Time Violation Attacks on AES. In EDCC,
pages 91-96. IEEE Computer Society, 2008.

S. P. Skorobogatov. Semi-invasive Attacks-a New
Approach to Hardware Security Analysis. Ph.D.
dissertation, University of Cambridge - Computer
Laboratory, 2005. [Online]. http://www.cl.cam.ac.
uk/techreports/UCAM-CL-TR-630.pdf.

S. P. Skorobogatov and R. J. Anderson. Optical Fault
Induction Attacks. In B. S. K. Jr., Cetin Kaya Kog,
and C. Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 2—12. Springer,
2002.

STMicroelectronics. Environment Resistence
Improvements on Microcontrollers, 2010, [Online].
http://www.st.com/stonline/products/promlit/p_
protection_devices.htm.

J. Takahashi and T. Fukunaga. Differential Fault
Analysis on AES with 192 and 256-Bit Keys.
Cryptology ePrint Archive, Report 2010/023, 2010,
[Online]. http://eprint.iacr.org/.

E. Tromer, D. A. Osvik, and A. Shamir. Efficient
Cache Attacks on AES, and Countermeasures. Journal
of Cryptology, 23(1):37-71, 2010.

C. D. Walter, Cetin Kaya Kog, and C. Paar, editors.
Cryptographic Hardware and Embedded Systems -
CHES 2003, 5th International Workshop, Cologne,

Germany, September 8-10, 2003, Proceedings, volume
2779 of Lecture Notes in Computer Science. Springer,

2003.



