
Fast Disk Encryption Through GPGPU Acceleration

Giovanni Agosta, Alessandro Barenghi, Fabrizio De Santis, Andrea Di Biagio

Politecnico di Milano

{agosta,barenghi,dibiagio}@elet.polimi.it, fabrizio.desantis@mail.polimi.it

Gerardo Pelosi

Università degli Studi di Bergamo

gerardo.pelosi@unibg.it

Abstract—We present the design and performance analysis of a
GPU-optimized implementation of a disk encryption application
employing the XTS mode of operation applied together with the
Twofish algorithm within the well-known TrueCrypt suite. We
show how to correctly tune the design parameters, including data
allocation, thread packing, and parallelization strategy. Overall,
our implementation of TrueCrypt running on a NVidia GTX260
GPU outperforms by 67% the baseline implementation running
on a four core CPU.

I. INTRODUCTION

Data storage encryption has always been a key point in

warranting confidentiality, but encrypting large disk volumes

imposes a significant computational load on the CPUs. In case

of a single host system the CPU time used for encryption

is subtracted from the one available for coping with the

user’s needs. On dedicated Network Area Storage managers

(NAS) throughput is sacrificed in order to deal with the

additional workload due to encryption. A way to reduce this

computational load is to employ dedicated ASIC coprocessors

but this comes at a major cost, especially on user machines.

Moreover, the accelerators must be designed according to each

platform specification and are typically customized for a single

encryption algorithm with fixed key sizes [11], thus resulting

in a not so flexible solution.

A viable alternative comes from the Graphics Processing

Unit (GPU) world where coprocessors have grown towards

increasing levels of hardware parallelism, while containing the

costs. Since these platforms are now supported by development

toolchains which allow the implementation of general purpose

software without the need of fitting through the graphics

specific interface, they may be a viable choice for the imple-

mentation of generic computationally demanding algorithms.

The advantage of such a choice lies in both using off-the-shelf

hardware which comes at a very low cost with respect to ASIC

solutions, and exploiting the already deployed installbase on

common personal computers. Moreover, this design solution

relies on a standard bus interface (PCI-Express) and on a

subset of the recently standardized OpenCL language [12] for

high performance computing on graphic hardware.

The use of GPUs to speed up the computation of crypto-

graphic primitives was pioneered by D. Cook et al. in [6].

Further developements [9] focused on the engineering of an

AES implementation oriented towards the use in SSL network

communication channels, and considered the ECB, CBC and

CTR modes of operation.

The goal of this paper is to analyse the design and

performance of a GPU-optimized implementation of a disk

encryption application employing the XTS mode of operation

applied together with the Twofish algorithm [17] within the

well-known TrueCrypt suite [1]. The XTS mode of operation

has been recognized as the standard for disk encryption, and

Twofish is commonly used for this application, though the

results of our analysis apply with minimal modifications to

other encryption algorithms when used in the same context.

The target GPU architecture for this study is NVidia GeForce

GT200 family.

The rest of this paper is organized as follows. Section II

describes the XTS mode of the operation and its use within

the TrueCrypt disk encryption software. Section III describes

the GeForce GT200 GPU family and its programming model.

Section IV describes the design of an optimized GPU imple-

mentation of TrueCrypt, relative to the Twofish algorithm. Sec-

tion V provides an experimental evaluation of the TrueCrypt

implementation on the NVidia GT200 architectural family.

Finally, Section VI provide some conclusions and points out

some directions for future work.

II. TRUECRYPT XTS ENCRYPTION ALGORITHM

The encryption of massive amounts of data on the fly is

one of the most computationally intensive operation performed

by both storage servers and common single user systems in

order to to enforce confidentiality. Among all the applicative

solutions only a few are able to operate through the XTS

mode of operation [16], which was recognized as the IEEE

P1619 standard for data encryption on block-oriented storage

devices [2], [3], [10]. Within those compliant to IEEE P1619,

TrueCrypt is a multi-platform and open source software that

manages virtual disks to be encrypted on the fly. The software

is able to use either files, disk partitions or full devices as

data support for the logical volumes (a.k.a. virtual disks), thus

allowing its employment on both single disks and multiple

network shared storages.

The XTS mode of operation was designed primarily for

the encryption of data on block oriented devices and therefore

assumes that the plaintext is naturally split into data units. The

underlying assumption motivating the aformentioned organi-

zation of data is the inherent structure of permanent storage

devices which allows the access to data only in physical blocks

ranging up from 512 bytes. These data units are usually larger

than the width of the block cipher employed in the process,

and must therefore be further split into smaller cipher blocks,

Encryption

Encryption

(C)n,i

 w n,i

2
k

k
 1

(P)n,i

n n,0 n,i
 P = { P ... P ...}

n n,0 n,i
 C = { C ... C ...}

i

Plaintext

cipher block

Ciphertext

cipher block

α

n
_

n

Fig. 1. XTS Encryption Mode block diagram [3]

which must have a size that fits exactly the input data size of

the encryption algorithm.

The tweakable codebook mode of operation XTS, shown

in Figure 1, exploits the Xor-Encrypt-Xor design [16] to

obtain resilience against the wider range of correlation and

distinguishing attacks [8] made feasible by the large amount

of encrypted data available to the attacker.

The input of the encryption mode is represented by both the

plaintext P , split into data units Pn, and the positional indices

n of the data units within the logical volume. The enciphered

data unit Cn is obtained through three steps, which act block-

wise on the input data. At first, the input block Pn,i is whitened

through xor-ing with an appropriate position-dependent pad

wn,i. Then, the result is encrypted using the chosen symmetric

encryption algorithm with the primary encryption key k1. After

the encryption, the output is whitened again with the same pad

wn,i to obtain Cn,i.

As depicted in Figure 1, the whitening pad wn,i is obtained

in two steps. At first, the data unit index n is enciphered with a

secondary key k2. The output of the encryption n̄ is interpreted

as an element of Z2128 ≃ Z2(α), where:

Z2(α) = {β|β = θ0α
127 + . . . + θjα

127−j + . . . + θ127}

with ∀j, j ∈ {0, . . . , 127} θj ∈ Z2 and α ∈ Z2128\Z2 is the

primitive element of Z2128 such that α128+α7+α2+α+1 = 0
with binary representation α = (00 . . . 010)2. This value is

used to obtain the whitening pads wn,i for all cipher blocks

Pn,i within a data unit Pn, through multiplying it in Z2128

by αi, where i is the sequence number of cipher block Pn,i

within Pn.

The TrueCrypt framework limits the number of data units

enciphered with a single call to the encryption primitive to

512, that is, every call encrypts a chunk of 256 KB from

the plaintext. While this is not an explicit constraint imposed

by the standard, it has multiple advantages. First of all, it

represents a tradeoff between the dynamic memory footprint

and the performance gain from enhanced data locality of

the memory segment. Moreover, since the ciphertext will be

written directly onto the physical storage device, and the

Operating System clusters consecutive write operations, it is

sensible [19] to choose the plaintext chunk passed to the

encryption primitive as a multiple of the largest possible

physical block size (starting from 512 bytes up). Since the

actual physical device may be composed of an array of

redundant disks (RAID), the physical block size may ramp up

to 128 KB. On the other hand, a physical device composed

by a single disk has a physical block size of 4 KB. A 256 KB

sized plaintext chunk represents a well-known best practice

trade-off between underfilled calls to the encryption primitive

and the risk of handling a single physical block encryption

through multiple calls, thus harming disk writing throughput.

Truecrypt offers the possibility to choose the encryption

algorithm E among the three best candidates of the NIST

AES Contest: AES [7], Twofish [17] and Serpent [4]. All

the algorithms are employed with 256 bit wide keys in order

to compensate the potential risk of correlation attacks which

could be lead owing to the large quantity of enciphered

material. The size of the input to all the available encryption

algorithms is 128 bits, therefore resulting in 32 cipher blocks

per data unit. In this paper, we chose Twofish as the encryption

algorithm, since it has the advantage of being faster than AES

when used with 256 bit wide keys [18] while retaining the

same, very high, security margin.

Algorithm II.1 summarizes the XTS mode of operation

implemented by the TrueCrypt toolkit.
III. PROGRAMMABLE GRAPHICS PROCESSING UNITS

In recent times, Graphics Processing Units (GPUs) have

been considered a potential source of computational power

for non-graphical applications, due to the ongoing evolution

of their programming interfaces and their appealing cost-

performance figures of merit. Pioneering works attempted to

adapt “general purpose” applications using graphic rendering

APIs (OpenGL and DirectX) since they were the only way to

tap into the GPU computational resources [15].

A. The NVIDIA GT200 Architectures

Modern GPUs now include hundreds of processing ele-

ments grouped in a hierarchical structure. In our case, the

NVIDIA GT200 GPU series provides a set of independent

multithreaded streaming multiprocessors. Figure 2 shows an

overview of the NVIDIA GT200 streaming processors array

which is the part of the GPU architecture responsible for the

general purpose computation. Each streaming multiprocessor

is composed by a set of 8 streaming processors, two special

functional units and a multithreaded instruction issue unit

(respectively indicated as SP, SFU and MT-Issue in Figure 2).

A SP is a fully pipelined single-issue core with two ALUs

and a single floating point unit (FPU). SFUs are dedicated to

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream
Multiproc

Stream Multiproc Controller

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream Multiproc Controller

Texture/Processor Cluster

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory

Shared

Stream Multiproc Controller

Texture/Processor ClusterTexture/Processor Cluster

Fig. 2. Sketch of the NVIDIA GT200 streaming processors array architecture: each Texture/Processor Cluster contains three stream multiprocessors. In
turn, each stream multiprocessor is composed of eight streaming processor cores (SP), plus two special function units (SFU). Shared memory is local to each
stream multiprocessor.

Algorithm II.1: TrueCrypt XTS Encryption Mode Algo-

rithm.

Input: P = (Pd, Pd+1, . . . , Pd+t): input plaintext chunk
as a sequence of t data units. [d, d+t]: range of

data unit indices of the whole plaintext to be

encrypted through multiple calls to the algorithm.

k1: primary encryption key. k2: secondary key.

Output: C = (Cd, Cd+1, . . . , Cd+t) output ciphertext

chunk.

Data: E(p, k): symmetric encryption function on

plaintext p using key k. t = 512: number of data

units in a plaintext chunk.

m = 32: number of cipher blocks per data unit.

Pn = (Pn,0, . . . , Pn,m−1), Cn =
(Cn,0, . . . , Cn,m−1) ∀ n ∈ [d, d + t].

begin1

for n← d to d + t do2

n̄← E(n, k2)3

for i← 0 to m− 1 do4

wn,i ← n̄⊗ αi
5

Cn,i ← E(wn,i ⊕ Pn,i, k1)⊕ wn,i6

return C7

end8

the computation of transcendental functions and pixel/vertex

manipulations. The MT-Issue unit is in charge of mapping

active threads on the available SPs.

A multiprocessor is able to concurrently execute groups of

32 threads called warps. Since each thread in a warp has its

own control flow, their execution paths may diverge due to

the independent evaluation of conditional statements; when

this happens, the warp serially executes each path. When the

warp is executing a given path, all threads that have not taken

that path are disabled. If the control flows converge again,

the warp is able to return to a single, parallel execution of

all threads. Each multiprocessor executes warps much like the

Single Instruction Multiple Data (SIMD) paradigm, as every

thread is assigned to a different SP and every active thread

executes the same instruction on different data. The MT-Issue

unit weaves threads into warps and schedules an active warp

for execution, using a round-robin policy with aging.

Streaming multiprocessors are in turn grouped in Texture

Processor Clusters (TPC). Each TPC includes three streaming

multiprocessors in the GT200 architecture.

Finally, the NVIDIA GPU on-board memory hierarchy

includes registers (private to each SP), on-chip memory and

off-chip memory. The on-chip memory is private to each

multiprocessor, and is split into a very small instruction cache,

a read-only data cache, and 16 KB of addressable shared data,

respectively indicated as I-cache, C-cache and Shared Memory

in Figure 2. This shared memory is organized in 16 banks

that can be concurrently accessed, each bank having a single

read/write port.

B. CUDA Programming Model

The Compute Unified Device Architecture (CUDA) [13],

[14], proposed by NVIDIA for its G80, G92 and GT200

graphics processors, exposes a programming model that in-

tegrates host and GPU code in the same C++ source files.

The main programming structure supporting parallelism is

an explicitly parallel function invocation (kernel) which is

executed by a user-specified number of threads. Every CUDA

kernel is explicitly invoked by host code and executed by

the device, while the host-side code continues the execution

asynchronously after instantiating the kernel. The programmer

is provided with a specific synchronizing function call to

wait for the completion of the active asynchronous kernel

computation.

The CUDA programming model abstracts the actual par-

allelism implemented by the hardware architecture, providing

the concepts of block and thread to express concurrency in

algorithms. A block captures the notion of a group of con-

current threads. Blocks are required to execute independently,

so that it has to be possible to execute them in any order

(in parallel or in sequence). Therefore, the synchronization

primitives semantically act only among threads belonging to

the same block. Intra-block communications among threads

use the logical shared memory associated with that block.

Since the architecture does not provide support for message-

passing, threads belonging to different blocks must communi-

cate through global memory. The global memory is entirely

mapped to the off-chip memory. The concurrent accesses to

logical shared memory by threads executing within the same

block are supported through an explicit barrier synchronization

primitive.

A kernel call-site must specify the number of blocks as well

as the number of threads within each block when executing the

kernel code. The current CUDA programming model imposes

a capping of 512 threads per block.

The mapping of threads to processors and of blocks to mul-

tiprocessors is mainly handled by hardware controller com-

ponents. Two or more blocks may share the same multipro-

cessor through mechanisms that allow fast context switching

depending on the computational resources used by threads and

on the constraints of the hardware architecture. The number

of concurrent blocks managed by a single multiprocessor is

currently limited to 8.

In addition to the logical shared memory and the global

memory, in the CUDA programming model each thread may

access a constantmemory. An access to this read-only memory

space is faster than one to global memory, provided that

there is sufficient access locality since constant memory is

implemented as a region of global memory fit with an on-

chip cache. Finally, another portion of the off-chip memory

may be allocated as a local memory that is used as thread

private resource. Since the local memory access is slow, the

shared memory also serves as an explicitly managed cache –

though it is up to the programmer to warrant that the local

data being saved in shared memory are not accessed by other

threads. Shared memory comes in limited amounts (threads

within each block typically share 16 KB of memory) hence,

it is crucial for performance for each thread to handle only

small chunks of data.

IV. DESIGN OF XTS ENCRYPTION MODE FOR GT200

ARCHITECTURE

In this section we address the task of engineering the

encryption primitive implemented in TrueCrypt to exploit the

computational power of the GT200 architecture. We firstly

analyse the algorithm in order to highlight the potentially

parallelizable sections and identify the parallelization strate-

gies, and then we explore the parameter space proper of both

the target application and the chosen hardware architecture,

to select the most efficient solution. The main parameters

exposed by the CUDA programming model are the allocation

of data to the memory hierarchy of the device and the packing

of threads into thread blocks.

During the following discussion, we will focus on a single

choice for the encryption function E, i.e. Twofish, but similar

considerations may be done for both the AES and Serpent

algorithms.

Algorithm IV.1: Parallel TrueCrypt XTS EncryptionMode

Algorithm.

Input: P = (Pd, Pd+1, . . . , Pd+t): input plaintext chunk
as a sequence of t data units. [d, d+t]: range of

data unit indices of the whole plaintext to be

encrypted through multiple calls to the algorithm.

k1: primary encryption key. k2: secondary key.

Output: C = (Cd, Cd+1, . . . , Cd+t) output ciphertext

chunk.

Data: E(p, k): symmetric encryption function on

plaintext p using key k. t = 512: number of data

units in a plaintext chunk.

m = 32: number of cipher blocks per data unit.

Pn = (Pn,0, . . . , Pn,m−1), Cn =
(Cn,0, . . . , Cn,m−1) ∀ n ∈ [d, d + t].
N = (N0, N1, . . . , Nt): encrypted data units

indices.

begin1

memCopyToGPU(P ,d,k1,k2)2

foreach j ∈ [0, t] do3

Nj ← E(d + j, k2)4

foreach j ∈ [0, t] do5

foreach i ∈ [0, m− 1] do6

wd+j,i ← Nj ⊗ αi
7

Cd+j,i ← E(wd+j,i ⊕ Pd+j,i, k1)⊕ wd+j,i8

memCopyToHost(C)9

return C10

end11

A. Parallelization Strategy

To maintain compatibility with the TrueCrypt infrastructure,

and to avoid the loss of performance and portability due to

variable plaintext chunk sizes (see Section II), the described

implementation processes plaintext chunks of 256 KB (with

the associated unique data unit indices).

Given the algoritm reported in Section II, we identify the

innermost loop as fully parallelizable, due to the lack of

direct inter-block dependencies. The outermost loop includes,

in addition to the innermost loop, also the computation of

n̄. Since there is no loop-carried dependency, we can apply

the loop fission transformation [5] to split the outermost

loop in two loops, the first computing all values of n̄, and

the second computing the innermost loop. Algorithm IV.1

shows the corresponding parallelized code. The advantage of

Algorithm IV.1 with respect to the original Algorithm II.1 lies

in the fact that the entire outermost loop is now parallelizable

(as highlighted by the use of foreach constructs), allowing

the implementation to be composed of just two CUDA kernels,

one for the computation of the Nj encrypted data unit indices,

and one for the encryption of the cipher blocks.

Algorithm IV.2: Parallel TrueCrypt XTS EncryptionMode

Algorithm.

begin1

memCopyToGPU(P ,d,k1,k2)2

foreach j ∈ [0, t] do3

foreach i ∈ [0, m− 1] do4

wd+j,i ← E(d + j, k2)⊗ αi
5

Cd+j,i ← E(wd+j,i ⊕ Pd+j,i, k1)⊕ wd+j,i6

memCopyToHost(C)7

return C8

end9

However, this construction still use two different CUDA

kernels. Since setting up the execution of a kernel leads to a

large overhead, it is worth investigating whether it is possible

to obtain an implementation using a single kernel. Consider

the original Algorithm II.1. If we replace the computation of

a single n̄ (line 3) with the computation of m identical values

N̄ = (n̄, n̄, . . . , n̄), we obtain two innermost loops with the

same loop bounds (from 0 to m− 1). We can now apply the

loop fusion transformation [5] to these innermost loops, to

obtain Algorithm IV.2. While such an algorithm performs the

computation of each n̄ m times, which may seem to lead to

performance degradation, this degradation is limited both by

the parallel execution of these computations and by the fact

that the computation of these values eliminates the need to

load them from memory, which would have otherwise led to

a large number of concurrent and conflicting memory accesses.

On the other end, having a single CUDA kernel greatly reduces

the invocation overhead.

Regardless of the parallelization strategy chosen, the in-

vocation of the encryption primitive requires a data transfer

from the host main memory to the device global memory,

including the plaintext chunk, the index of the first data unit,

and the primary and secondary encryption keys. Conversely,

on completion of the encryption, the computed ciphertext is

transferred back to the host main memory.

B. Memory Allocation Design

As reported in Section III, when engineering an algorithm

for the GT200 architecture, a critical design decision is the

allocation of data onto the different memories provided by

the architecture, which in turn affects the way threads are

split onto thread blocks. We also recall that every thread

allocated to the same thread block may access a fast, 16 KB

shared memory, while threads in different blocks may only

communicate through the slower (but much larger) global

memory, endowed with a read only cache. Multiple thread

blocks may be allocated by the CUDA scheduler to the same

multiprocessor, thus implicitly sharing the same hardware

resources, including the shared memory.

In addition to the data described in Algorithm IV.1 and IV.2,

we need to consider the data involved in the computation

of the encryption algorithm, including both constants and

temporary values. Like most symmetric key encryption al-

gorithms, Twofish employs substitution boxes (S-boxes), that

are frequently accessed during the encryption process. It is

important to note that these accesses are non-local by design:

temporally consecutive accesses do not refer to spatially

adjacent memory locations. Specifically, Twofish employs 4

key dependent S-boxes, each 8 by 8 bit wide. To achieve

a performance speedup, these S-boxes are expanded through

precomputing the key dependencies and are thus used in an

expanded form which occupies 4 KB of memory. In addition

to the S-Boxes, Twofish uses a key expansion mechanism

which outputs 160 bytes of key material; these data should

also be stored in a low latency memory. Therefore, the total

amount of data that should be loaded in a shared low latency

memory is 160+4096 bytes, which allows us to use the shared

memory, thus exploiting the low latency access provided by

this explicitly accessed cache.

Note that constant values, such as S-boxes, could also be

stored in the constant memory. Unfortunately, the access to

the constant memory cache is single ported, in contrast with

the 16 ports exposed by the shared memory. It is therefore

sensible to choose the shared memory to store these constants

since they will be accessed simultaneously by all threads. To

save memory, the key for the data encryption is stored in the

same space occupied by the index encryption key once the

index encryption has ended. This allows the implementation

to occupy less than 1/3 of the shared memory for each thread

block, thus allowing multiple CUDA thread blocks to keep

their data on the shared memory at the same time. This, in

turn, enables faster context switching among the thread blocks

on the same multiprocessor.

C. Thread Packing Strategy

In principle, the number of threads per CUDA thread block

is constrained by the width of the SIMT stream multiprocessor,

which process 32 threads at the same time executing the same

instruction. Thus, to maximize the usage of resources, the

number of threads per block should be a multiple of 32. A

further constraint imposed by the CUDA framework sets an

upper limit of 512 threads per block. Since the threads in a

block are divided in warps of 32 threads at the architectural

level, and all threads in a warp concurrently execute the same

instruction, to allow a degree of interleaving of different warps

to hide memory latencies, it is advisable to have at least two

warps per block, thus imposing a lower bound of 64 threads

per block.

Having determined the four options of 64, 128, 256 and 512

threads per CUDA block, we need to explore this design space

to determine the best choice for both parallelization strategies.

Once the number of threads per block t has been deter-

mined, we can establish the number of CUDA thread blocks

as b = e
t
where e is the number of cipher blocks in a plaintext

chunk (fixed at 214 by the TrueCrypt framework).

V. EXPERIMENTAL RESULTS

In this section, we conduct a thorough experimental cam-

paign to validate the analysis presented in Section IV and

provide a performance evaluation of the optimal solution

identified.

A. Experimental Setup

The experimental setup consists of a host system based on

an Intel Core 2 Quad Q6600 clocked at 2.4 GHz, with an 8 MB

L2 cache, and an NVidia GTX260 with 192 processing cores

(equivalent to 24 stream multiprocessors) and 896 Mbytes of

on-board GDDR3 memory. The CUDA toolkit used is version

2.1, installed on a Gentoo Linux system compiled for x86 64

architecture. The host system offers a PCI-Express version 1

to connect the board.

All the tests have been conducted through issuing write

requests on volumes with sizes ranging from 5 MB to 1 GB, to

simulate various possible disk buffer sizes provided by modern

Operating Systems to cluster physical write operations. The

results are gathered as the mean of 30 trials, with a mean

square error lower than 1% and were collected using realtime

clock sampling primitives in order to achieve the maximum

precision available from the system. For the GTX260 board,

the timings were taken both with and without the memory

transfer operation to and from the device, to evaluate the

overhead.

B. Thread Packing Design Space Exploration

The first batch of experiments explores the range of possible

numbers of threads per CUDA block, from 64 to 512. The

results shown in Figure 3 show that 256 threads represent the

optimal choice for all plaintext sizes. This result is justified

if we consider that, by architectural constraint, each stream

multiprocessor has an issue queue that can accomodate 24

warps of 32 threads each. A block of 256 threads is composed

by exactly 8 warps, which is the maximum power of 2 that is

also a divider of 24 – a power of 2 is needed to allow each

block to have a number of threads that divides the number of

cipher blocks in the plaintext chunk, while having a divider

of the number of warps allocated in the issue queue allows

the issue unit to switch among different blocks with minimal

overhead.

 0

 500

 1000

 1500

 2000

 2500

5 10 50 100 500 1000

E
n
c
ry

p
ti
o
n
 T

im
e
 (

m
s
)

Size (MB)

64 Threads
128 Threads
256 Threads
512 Threads

Fig. 3. Comparison between different number of threads per block

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100 200 300 400 500 600 700 800 900 1000

E
n
c
ry

p
ti
o
n
 T

im
e
 (

m
s
)

Size (MB)

Without copy overhead
With copy overhead

Fig. 4. Comparison between timings with and without the memory transfer
overheads

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

5 10 50 100 500 1000

E
n
c
ry

p
ti
o
n
 T

im
e
 (

m
s
)

 (
in

c
lu

d
in

g
 o

v
e
rh

e
a
d
)

Size (MB)

Two CUDA kernels
Single CUDA kernel

Fig. 5. Comparison between two kernels and a single one

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 50 100 500 1000

E
n
c
ry

p
ti
o
n
 T

im
e
 (

m
s
)

 (
in

c
lu

d
in

g
 o

v
e
rh

e
a
d
)

Size (MB)

GeForce GTX260
Intel Q6600

Fig. 6. Comparison between GPU and a quad core CPU

While these considerations might have led to identifying

256 as the optimal choice without exploration, one must take

into account the fact that there are many temporary variables

which the CUDA compiler may or may not spill to the shared

memory, as well as the fact that a small part of the shared

memory is used for system purposes by the CUDA framework,

making the memory size not a power of 2.

C. Setup and Data Transfer Overhead Analysis

After confirming the optimal number of threads per block

to be used, we observed that the setup time and the memory

transfers represent a significant cost when using the acceler-

ator. As shown in Figure 4, there is both a fixed overhead

which is due to the setup time necessary to wake up the board

and a memory transfer overhead which grows linearly with

the number of plaintext chunks processed. The fixed overhead

amounts to 1326.26 ms while the linearly growing one is

quantified in 0.86 ms per encryption primitive call (i.e. for

transferring forth and back 256 KB of plaintext). Note that

the memory tranfers cannot be entirely removed, but their cost

might be reduced using PCI-Express 2.0, which supports twice

the bandwith of version 1.

D. Comparison of Parallelization Strategies

Figure 5 shows the comparison of the two parallelization

strategies identified in Section IV-A. We can see that the

winning strategy is having a single kernel as shown in Al-

gorithm IV.2. This means the increased contention for the

shared memory and the kernel invocation overhead due to

the split kernel of Algorithm IV.1 degrade the performance

more than the increased computational effort undertaken in

Algorithm IV.2.

E. Performance Evaluation

Figure 6 compares the performances achieved by our solu-

tion with the x86 64 implementation of TrueCrypt. The stan-

dard implementation of TrueCrypt is able to exploit parallelism

on a multi-core system, assigning plaintext chunks in a round

robin fashion to the available cores. The reported test have

been conducted using all four cores offered by the host system.

For small sizes of data, the CPUs outperform the GPU,

due to the heavy wake up overhead of the device. On heavier

workloads, the CPU implementation does not keep up with

the performances of the GTX260. The tradeoff point for the

system used in the experiments is reached at a plaintext size

of 184 MB against four cores, that is 46 MB of encryption

per single core. The best speedup is achieved when dealing

with one gigabyte wide write requests and it amounts to 67%.

We want to underline that TrueCrypt keeps all the cores of the

host machine under full load when encrypting the data, while

the GPU implementation keeps the system load well under

10% on a single core – mainly due to disk interrupt handling.

The results show a graphic board can be successully em-

ployed as a cryptographic accelerator on desktop systems.

Tweaking the system buffer size and writeback frequency can

help in doing writeback calls nearer to the tradeoff point. In a

Network Area Storage system, the GPU implementation can

provide a maximum throughput of 152 MB/s against the 92

MB/s provided by the CPU, without lowering the capability

of the system to deal with network transfers.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the optimized mapping of the

Truecrypt disk encryption primitive for the NVidia GT200

architecture, describing how to correctly tune the design

parameters, including data allocation, thread packing, and par-

allelization strategy. Overall, our implementation of TrueCrypt

running on a NVidia GTX260 GPU outperforms by 67% the

baseline implementation running on a four core CPU. Thus

proving the viability of using graphic coprocessors as effective

accelerators for disk encryption both for single users and entry-

to mid-level network area storage systems. This solution is

particularly cost-effective expecially in the enterprise setting

where it offers resonable performances without resorting to

expensive and not so flexible ad-hoc hardware accelerators.

REFERENCES

[1] TrueCrypt: Free Open Source On-The-Fly Encryption.
http://www.truecrypt.org.

[2] IEEE Standard for Authenticated Encryption with Length Expansion for
Storage Devices. IEEE Std 1619.1-2007, pages c1–45, 16 2008.

[3] IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. IEEE Std 1619-2007, pages c1–32, 18 2008.

[4] Ross J. Anderson, Eli Biham, and Lars R. Knudsen. The case for serpent.
In AES Candidate Conference, pages 349–354, 2000.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler
transformations for high-performance computing. ACM Comput. Surv.,
26(4):345–420, 1994.

[6] Debra L. Cook, John Ioannidis, Angelos D. Keromytis, and Jake Luck.
CryptoGraphics: Secret Key Cryptography Using Graphics Cards. In
Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture Notes in

Computer Science, pages 334–350. Springer, 2005.

[7] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The

Advanced Encryption Standard. Springer, 2002.

[8] Mohamed Abo El-Fotouh and Klaus Diepold. Statistical testing for
disk encryption modes of operations. Cryptology ePrint Archive, Report
2007/362, 2007. http://eprint.iacr.org/.

[9] Owen Harrison and John Waldron. AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units. In Pascal Paillier
and Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes

in Computer Science, pages 209–226. Springer, 2007.
[10] Jim Hughes. IEEE Standard for Encrypted Storage. Computer,

37(11):110–112, 2004.
[11] IBM. IBM eServer Cryptographic Hardware Products. http://www-

03.ibm.com/security/cryptocards/.
[12] Khronos Group. OpenCL. http://www.khronos.org/opencl.
[13] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable

parallel programming with cuda. ACM Queue, 6(2):40–53, March 2008.
[14] NVIDIA Corporation. CUDA Technology. http://www.nvidia.com/

CUDA, September 2008.
[15] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens

Krger, Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-
purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, 2007.

[16] Phillip Rogaway. Efficient instantiations of tweakable blockciphers
and refinements to modes ocb and pmac. In Pil Joong Lee, editor,
ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages
16–31. Springer, 2004.

[17] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. The Twofish encryption algorithm: a 128-bit block

cipher. John Wiley & Sons, Inc., New York, NY, USA, 1999.
[18] Bruce Schneier and Doug Whiting. A performance comparison of the

five aes finalists. In AES Candidate Conference, pages 123–135, 2000.
[19] Andrew S Tanenbaum. Modern operating systems. Prentice-Hall, Upper

Saddle River, NJ, 1992.

