
Record Setting Software Implementation of DES Using CUDA

Giovanni Agosta∗, Alessandro Barenghi∗,Fabrizio De Santis †, and Gerardo Pelosi‡

∗Dipartimento di Elettronica e Informazione
Politecnico di Milano, 20133 Milano - Italy

Email:{agosta,barenghi}@elet.polimi.it
†Politecnico di Milano 20133 Milano - Italy

Email: fabrizio.desantis@mail.polimi.it
‡Dipartimento di Ingegneria dell’Informazione e Metodi Matematici

University of Bergamo, 24044 Dalmine - Italy
Email: gerardo.pelosi@unibg.it

Abstract—The increase in computational power of
off-the-shelf hardware offers more and more advanta-
geous tradeoffs among efficiency, cost and availability,
thus enhancing the feasibility of of cryptanalytic at-
tacks aiming to lower the security of widely used cryp-
tosystems. In this paper we illustrate an GPU-based
software implementation of the most efficent variant
of Data Encryption Standard (DES), showing the
performance of a software breaker which effectively
exploits the multi-core Nvidia GT200 graphic archi-
tecture. The key point is to assess how well the struc-
ture of a symmetric key cipher can fit the GPU pro-
gramming model and the single instruction multiple
data architectural parallelism. The proposed breaker
outperforms the fastest general purpose CPU-based
implementations by an order of magnitude, and, due
to the vast availability of GPUs on the market, the
speedup translates into a sound improvement in the
cost efficiency of the attack. As opposed to solutions
based either on application specific or reconfigurable
hardware, the proposed implementation does not
require any specific technical knowledge from the
attacker in order to be successfully built, once our
implementation is available. This turns out in a better
cost-availability tradeoff and minimizes the required
setup time for such an attack to be mounted.

Keywords: Brute-force Attacks, DES, GPGPU.

I. Introduction

The Data Encryption Standard (DES) [1] is one of the
most popular encryption algorithms, standardized by
NIST in 1977 and subsequently maintained as a FIPS
security primitive up to 2005, when it was retired [2],
since it had been proved that the cipher could be broken
via a brute force attack [3]. Even though DES was
not considered safe anymore for government applica-
tions, comments had to be addressed holding that “the
DES should be retained because it is widely used in
the market” and “FIPS 463” and associated standards
are used in the commercial world and serve important
functions, including use by the entertainment industry
for real-time broadcast security, illegal copy protection
of files, and security of digital television signals” [2].

So, while not anymore relevant for high-security appli-
cations, DES continues to be used in many commer-
cial applications due to backward compatibility reasons,
thus living long beyond its recommended lifetime. The
DES encryption primitive is still supported by most
encryption suites, including OpenSSL [4]. Since DES
was designed specifically for highly-optimized hardware
implementations, its structure contains many operations
which require computationally expensive adaptations in
order to be executed by a general purpose CPU. Thus,
both known brute force attacks, Deep Crack [3] and
COPACOBANA [5], rely on dedicated hardware designs:
the first in the form of ad-hoc ASIC chips, the second
in the form of FPGA-based hardware. Special purpose
hardware is, however, expensive, thus DES still remains
a viable solution for short-term secrets, when the po-
tential attacker has only access to consumer hardware
and lacks the technical knowledge and skills required in
order to build ad-hoc cracking solutions. The goal of this
paper is to explore the viability of brute force attacks
to the DES cipher with consumer grade hardware, thus
removing the last technical barrier left to attack the
cryptosystem. Given the amount of computation needed
to mount such an attack, GPGPU boards appear as the
most promising target hardware: not only these boards
provide a very low cost/MIPS ratio (which is bound to
drop further, given the nature of the GPU market), but
they are readily available and easily programmed thanks
to a developer toolkit provided by the manufacturer [6].
If a brute force attack can be mounted against DES with
today’s GPUs, even if the performances of modern ded-
icated hardware solutions such as COPACOBANA are
not reached, the fast evolution of the GPU market will
provide more and more computational power in the near
future, making in the end the software solution more cost
efficient than comparable hardware solutions. Moreover,
since there is already a widely deployed installbase of
these devices, it is easy to harness, either through explicit
agreement or by taking control of common desktops, a

large amount of computing devices [7]. In particular,
in the second case, typical of a BotNet scenario, the
legitimate owner of the hardware is not likely to discern
the exploiting of its computational resources, since the
bruteforce computation is run on the GPU, which is very
often idle under a typical home workload.

This paper is organized as follows: Section 2 introduces
the DES algorithm and its highly optimized software
implementation, Section 3 describes the NVidia GPU
architecture and programming model. Section 4 reports
the description of the specific GPU implementation
of DES. Section 5 shows the performance results and
presents a cost evaluation to realize a breaker using
only consumer hardware. Finally, Section 6 draws our
conclusions.

II. DES Cipher

DES is a symmetric block cipher with 64-bit block size
that uses a 56-bit key. As previously mentioned, it was
chosen as U.S.A. federal standard by NIST in 1977, when
a 256 wide key space was deemed to be a sensible choice
to make unfeasible any brute-force attack. The 56-bit
key of DES is endowed with an additional parity byte
to bring its size up to 64 bits. DES design consists of
two parts, the encryption/decryption algorithm and the
key-scheduling algorithm. It is an iterated block cipher
consisting of 16 rounds, each designed with a Feistel
structure and composed by bit-shuffling (P-boxes), non-
linear functions (S-boxes) and modular algebra linear
transformations through exclusive-OR operations. The
Feistel structure has the advantage that encryption and
decryption operations are identical, thus requiring only
a reversal of the key schedule.

The key schedule algorithm, after an initial permuta-
tion of the key bits (Permuted Choice 1, PC-1), discards
the eight parity bits and divides the key into two 28-
bit halves; each half is henceforth treated separately.
For each subsequent round, both halves are rotated
left by either one or two bits (depending on a pre-
determined table that specifies the rotations for each
round), and then 48 subkey bits are selected through
a second fixed permutation (Permuted Choice 2, PC-
2) taking 24 bits from the each half. A different set
of key bits is used in each subkey (one for each round
of the encryption/description algorithm) in such a way
that each bit is used in 14 out of the 16 subkeys: sbki,
i ∈ {1, . . . , 16}.

Before encryption, the 64-bit plaintext is passed
through an initial fixed permutation (IP), and the output
is divided into two 32-bit blocks (L0, R0, respectively)
in order to serve as input of the first round. In the
first round, both the block R0 and the subkey sbk1,
are jointly evaluated by the (Feistel) F function that
includes a block expansion operation to align its size to

48 bits, followed by a XOR operation between the subkey
and the expanded block and eight substitutions through
employing S-boxes having 6 bit input and 4 bit output.
The 32-bit value output from the S-Boxes is passed
through a fixed permutation (P-box). The output from
the F function is XORed with L0 to produce R1, whilst
R0 is directly fed to the other input of the first round as
L1. These operations are iterated for 16 rounds, except
for the fact that on the last round the left and right
halves are not swapped and the result is subject to a final
permutation (PI) to generate the 64-bit ciphertext. As
for decryption, the only difference from encryption lies
in the reverse order of the subkeys computed through
the key-scheduling algorithm.

The DES cipher was designed to intentionally slow
down software implementations. Indeed, permutations of
individual bits, or application of an arbitrary function
(S-box) to six bits of one word in order to insert a
four-bit result into another word, are executed quite
inefficiently on a word-based general-purpose CPU. Eli
Biham in [8], was the first to describe a software im-
plementation of DES that exploits the intrinsic bit-level
parallelism of the cipher. The basic idea lies in the
application of the SIMD (Single Instruction Multiple
Data) execution model at level of operations among the
n-bit integers of a general purpose CPU. Operations
among n-bit integers may be thought as executed by n
virtual processors, each executing the same instruction
in parallel but operating on different single bits of data.
The implementation reported in [8] encodes 64 DES
plaintext blocks in a non-standard way, in order to
mimic a fast hardware implementation with minimum
gate counting, and computes each gate function as a
single instruction. It operates on 64-bit CPU as a SIMD
machine with 64 one-bit processors. The execution of
permutation and expansion operations do not involve
any instruction but only register renaming. Instead, the
substitution functions are translated in a sequence of
logical operations that trace out the functionality of the
logic gates used in the hardware implementation of S-
boxes. Although the S-boxes are implemented in more
instructions than the ones needed for the usual look-up
implementation, the parallelism of this solution achieves
a considerable speed up (about ×5), even considering the
initial and final translation of the DES plaintext blocks
in the non-standard representation used by this method.

III. Overview of Compute Unified Device
Architecture

In recent times, Graphics Processing Units (GPUs) have
been reengineered in order to be a source of compu-
tational power even for for non-graphical applications,
thanks to the ongoing evolution of their programming
interfaces and their appealing cost-performance figures

of merit. Pioneering works attempted to adapt “gen-
eral purpose” applications using graphic rendering APIs
(OpenGL and DirectX) since they were the only way to
tap into the GPU computational resources [9].

A. The NVIDIA GT200 Architectures
Modern GPUs now include hundreds of processing ele-
ments grouped in a hierarchical structure. In our case,
the NVIDIA GT200 GPU series provides a set of inde-
pendent multithreaded streaming multiprocessors Fig-
ure 1 shows an overview of the NVIDIA GT200 stream-
ing processors array which is the part of the GPU archi-
tecture responsible for the general purpose computation.
Each streaming multiprocessor is composed by a set
of 8 streaming processors, two special functional units
and a multi-threaded instruction issue unit (respectively
indicated as SP, SFU and MT-Issue in Figure 1). A
SP is a fully pipelined single-issue core with two ALUs
and a single floating point unit (FPU). SFUs are ded-
icated to the computation of transcendental functions
and pixel/vertex manipulations. The MT-Issue unit is in
charge of mapping active threads on the available SPs.

A multiprocessor is able to concurrently execute
groups of 32 threads called warps. Since each thread in a
warp may follow a different control flow, their execution
paths may diverge due to the independent evaluation of
conditional statements; in these cases the warp serially
executes each path,disabling the computation for all
threads that have not taken the one under execution.
If the control flow ever converges back, the warp is
able to return to a single, parallel execution of all
threads. Each multiprocessor executes warps much like
the Single Instruction Multiple Data (SIMD) paradigm,
as every thread is assigned to a different SP and every
active thread executes the same instruction on different
data. The MT-Issue unit weaves threads into warps and
schedules an active warp for execution, using a round-
robin policy with aging.

Streaming multiprocessors are in turn grouped in Tex-
ture Processor Clusters (TPC). Each TPC includes three
streaming multiprocessors in the GT200 architecture.
Finally, the NVIDIA GPU on-board memory hierarchy
includes registers (private to each SP), on-chip memory
and off-chip memory. The on-chip memory is private
to each multiprocessor, and is split into a very small
instruction cache, a read-only data cache, and 16 KB
of addressable shared data, respectively indicated as I-
cache, C-cache and Shared Memory in Figure 1. This
shared memory is organized in 16 banks that can be
concurrently accessed, each bank having a single port.

B. CUDA Programming Model
The Compute Unified Device Architecture (CUDA) [10],
[11], proposed by NVIDIA for its G80, G92 and GT200
graphics processors, exposes a programming model that

integrates host and GPU code in the same C++ source
files. The main programming introduced by the program-
ming model is an explicitly parallel function invocation
(kernel) which is executed by a user-specified number
of threads. Every CUDA kernel is explicitly invoked by
host code and executed by the device, while the host-
side code continues the execution asynchronously after
instantiating the kernel. The programmer is provided
with a specific synchronizing function call to wait for
the completion of the active asynchronous kernel com-
putation.

The CUDA programming model abstracts the actual
parallelism implemented by the hardware architecture,
providing the concepts of block and thread to express
concurrency in algorithms. A block captures the notion
of a group of concurrent threads. Blocks are required to
execute independently, so that it has to be possible to
execute them in any order (in parallel or in sequence).
Therefore, the synchronization primitives semantically
act only among threads belonging to the same block.
Intra-block communications among threads use the log-
ical shared memory associated with that block. Since
the architecture does not provide support for message-
passing, threads belonging to different blocks must
communicate through global memory which is entirely
mapped to the off-chip memory. The concurrent accesses
to logical shared memory by threads executing within
the same block are supported through an explicit barrier
synchronization primitive.

A kernel call-site must specify the number of blocks
as well as the number of threads within each block
when executing the kernel code. The current CUDA
programming model imposes a capping of 512 threads
per block.

The mapping of threads to processors and of blocks
to multiprocessors is mainly handled by hardware con-
troller components. Two or more blocks may share the
same multiprocessor through mechanisms that allow
fast context switching depending on the computational
resources used by threads and on the constraints of the
hardware architecture. The number of concurrent blocks
managed by a single multiprocessor is limited to 8.

In addition to the logical shared memory and the
global memory, in the CUDA programming model each
thread may access a constant memory. An access to
this read-only memory space is faster than one to global
memory, provided that there is sufficient access locality
since constant memory is implemented as a region of
global memory fit with an on-chip cache. Finally, another
portion of the off-chip memory may be allocated as a
local memory that is used as thread private resource.
Since the local memory access is slow, the shared mem-
ory also serves as an explicitly managed cache – though
it is up to the programmer to warrant that the local

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream Multiproc Controller

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream Multiproc Controller

Texture/Processor Cluster

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream Multiproc Controller

Texture/Processor ClusterTexture/Processor Cluster

Figure 1. Sketch of the NVIDIA GT200 streaming processors array architecture: each Texture/Processor Cluster contains three stream
multiprocessors. In turn, each stream multiprocessor is composed of eight streaming processor cores (SP), plus two special function units
(SFU). Shared memory is local to each stream multiprocessor.

data being saved in shared memory are not accessed by
other threads. Shared memory comes in limited amounts
(threads within each block typically share 16 KB of
memory) hence, it is crucial for performance for each
thread to handle only small chunks of data.

IV. Implementation

In this section we will present the implementation strate-
gies adopted in order to fully exploit the computational
power of the nVidia CUDA architecture, and in order
to perform as many DES encryptions per second as
possible. Both the classical implementation and the bit-
sliced one have been realized in order to fully under-
stand the extent of the speedups achievable through the
exploitation of the large register file available on the
graphic board, which is particularly helpful when dealing
with this implementative strategies.

A. Conventional DES Implementation

The classical implementation of the DES algorithm we
developed is aimed at exploiting the intrinsic parallelism
of the brute force search of a key-space. This kind of par-
allelism, usually found in applications enciphering large
quantity of data, such as in hard disk encryption [12],
has been shown to be correctly exploitable through
demanding the execution of a full encryption to a single
thread. In order to sweep the full key-space, each thread
thus computes Ek(P) with a different key k, and checks
the output against the correct ciphertext provided. The
DES algorithm has been fully unrolled in order to avoid

control flow branches during the execution, which would
have decreased the efficiency. The internal state of cipher
block is represented by two 32-bit values (kept into
the register file of each SM), and the swap between
the two halves of the state is implemented through
simple variable renaming, which has the advantage of
not imposing any delay (as opposite to a real swap of
values between variables). All the algorithm constants
except for the S-Boxes have been hard-coded as constant
values and are thus loaded with the code at no additional
space cost and do not require to be stored in the global
memory or in the shared memories of the graphic board.
The S-Boxes are stored in the shared memory of the
board and loaded from the constant memory, since the
shared memory cannot be initialized statically. This
incurs in a minor performance penalty only for the first
call to the kernel function when the value of the S-
Boxes is fetched into the constant cache of the board.
Since there are no other memory operations the value
is stored in the caches for the whole duration of the
brute-force and subsequent kernels are able to load it
with a single cycle of fetching latency, for every kernel
call. Avoiding to do any read/write operation from/to
the main memory of the board (except for the write
operation referring to discover of the correct key) allows
us to fully exploit the architecture potential in terms of
instructions throughput, since we do not suffer from slow
loads/store operations. In order to further speedup the
execution of the algorithm, the plaintext is preprocessed,

on the host side, through the initial permutation (IP),
as this permutation is independent from the key. More-
over, to avoid the final permutation as well, the correct
ciphertext is preprocessed, on the host side, through the
inverse of the final permutation (PI−1) of the cipher:
using this method, the brute-forcer can directly compare
it to the output of the 16th round of the DES algorithm.

Every time a kernel is launched, the host checks if
the correct key has been written in a location of the
board global memory in an asynchronous manner, thus
without loss of performance. The location where the
correct key should be written is reserved at boot-up
time and is passed as a fixed parameter to the kernel.
This implementation enjoy a very low occupancy of
board resources, and is not expected to suffer from the
simultaneous launch of a very high number of blocks or
from the resource race between different warps on the
same block. This considerations allows us to expect the
maximum throughput for this implementation when we
are employing the largest possible number of threads in
flight while fitting correctly the issue window of each SM.

B. Bit-sliced DES Implementation

The conventional implementation is useful as a baseline
for evaluating GPU-optimized implementations of DES,
but it is not able to guarantee optimal performances,
since the basic DES design is geared towards hardware
realizations. Thus, we adopt the so-called bit-sliced al-
gorithm [8], which is known to provide a significant
performance boost when computing a large number of
DES encryptions in software on 64-bit superscalar CPUs.

Since the register file of the GPU is natively 32 bit
wide [10], [11], we decided to perform 32 DES encryption
in parallel using the bit-slicing technique. This prac-
tically means packing into a register all the n-th bits
of 32 different DES encryptions (n = 0, . . . , 31), and
subsequently performing all the bitwise operations of the
algorithm through. This enables to successfully bypass
the intrinsic slowdown due to bitwise operations which
do not fit well the GPU architecture since they are
transformed into bitwise operations between registers.

The first step is to expand both the plaintext and the
correct ciphertext into 64 register wide values, through
filling a whole register with the value of every single
bit of each one of them. Once this operation has been
performed, the values are fixed for the whole brute-
forcing effort and do not need to be changed any further.
These values are placed in the shared memory of the
GPU through loading them from the constant memory,
since the shared memory cannot be initialized statically.
In order to reduce the loading time, all the 64 values of
the sliced plaintext and ciphertext are loaded in parallel,
one by each thread of a CUDA-block, forcing the possible
number of threads per block to be a multiple of 64.

The second step is aimed at generating keys, and
test them with negligible performance losses: for the
sake of clarity, we will consider the full key-space as
divided into kernel sized unities, which will be swept by
a single CUDA-kernel call. For the sake of clarity in the
description, we split each key candidate bits into three
parts and consider them as three separate indexes. This
representation allows to spot out clearly which updates
can be avoided during the process of generating all the
possible keys (Figure 2).
The first part of the key (namely, the most significant

Kernel Call Index Block Index Thread Index
[fixed][computed on GPU][computed on host]

55 0......

Figure 2. Representation of the keyspace through partitioning in
three separate indexes

bits) is used as a counter of the number of launched
kernels, thus we need to update the value of the key
slices (i.e. the values of the n-th bits of a key contained
in the same register) only once every launch and this
can be done easily by the host, which passes them as
kernel parameters at every launch. Since these values
are updated only once per kernel call, their computation
is done while waiting for the previous kernel to finish,
thus masking the added latency.
The last part of the key (i.e. the least significant bits) is
used as an index of the thread executing the enciphering
operation, and is thus fixed for every block launched.
This allows us to prepare all the slices regarding this
part of the key in advance and pre-load them on the
constant memory of the board to be further fetched with
minimum overhead. The whole precomputed slice-block
is very small and is below 8KB for up to 256 threads per
block, thus fits the constant memory without issues. The
pre-computation needed to compute these values once is
negligible with respect to the time of the brute force
breaking.

The middle part of the candidate key bits is the only
one that requires an actual computation onto the board,
since it depends on which block the thread belongs to,
and this is only known when the kernel is running. This
computation is efficiently performed through a series of
log2(number of CUDA-blocks) binary mask operations
and assignments based on the CUDA-block index, which
yields the correct value for the missing slices. We stress
that, regardless of which control flow path is taken
through the branches which correctly select the block
index in the CUDA-kernel code, the number of opera-
tions performed by each one is the same. This avoids
mutual misalignments of the control flow of the different
threads. This causes the minimum possible performance
penalty when running the key generation code due to the

evaluation of the conditions to assign the correct values
of the bits of the key slice which will be processed by
a block of threads. This overhead is sensibly lower than
the one which would be imposed by generating all the
key slices checked by a CUDA-kernel call on the host
and transferring them afterwards to the main graphic
card memory, due to the high transfer latencies imposed
by the PCI-Express link when copying the data. We
verified experimentally that this approach impacts for
less than the 1% in the execution time of the kernel.
After computing the correct ones, the key-slices are
stored in the registers, together with the internal state
of the cipher, thus allowing the whole algorithm to be
run without accessing the global memory of the board.
All the permutations, expansions and selections in the
DES algorithm have been eliminated through correct
register renaming and the algorithm has been fully
unrolled to avoid also the branching due to its round
based nature. This effectively leaves only the S-Box
substitutions and the key additions to be computed
by the board,thus significantly lowering the number of
required operations.

Since the multiple memory lookup which would be
involved using a tabulated form of the S-Boxes would
be detrimental to performances, we employed a fully
combinatorial approach to the computation of the non
linear functions represented by them [13]. This approach
simply considers the S-Boxes as a 6 to 4 bit generic
combinatorial function whose algebraic form can be
deduced through analyzing their Karnaugh maps. In
order to reduce the computational impact of the S-Boxes
to a minimum, we used a representation needing only
56 bitwise logical operations, which according to [13] is
the most compact one when combined logical operations
such as XNOR or NAND are not directly available as a
single instruction from the architecture.

The last thing left after computing in parallel all
the encryptions is to check whether the correct key
has been found. This process has been split into two
parts: the comparison between the bit-sliced representa-
tion of correct ciphertext and the computed ones, and
the reassembling of the results of the aforementioned
comparison to extract the correct key once it has been
found. The computation of all the checks for the bit-
sliced ciphertext is still done on the GPU since we can
exploit the bit-sliced representation to check for the
correctness of 32 ciphertexts at once. The results of the
XOR comparison are stored in the global memory of the
board and are retrieved by the host which takes care of
checking if there is an actual case where the key has been
found through reconstruction of the compared values.
This calculation is performed while the next kernel call
to the device is in flight, in order to hide the latency
of the comparisons on the host which would otherwise

Table I
Throughput of the standard implementation of DES

(65535 CUDA-blocks per kernel)

Threads per CUDA-block Throughput [Mkey/s]

32 61.34

64 75.12

128 73.33

192 72.64

256 75.2

represent a significant slowdown. This implementation
allows us to fully exploit the resources offered by the
large register file on the board, we are expecting the
optimal throughput to be achieved when a sufficient
number of threads per block is provided in order to mask
the latencies.

V. Experimental Results and Cost

In this section we present the results obtained with our
implementation of DES and evaluate the practical fea-
sibility of brute-force DES breaking through employing
only off-the-shelf hardware which can either be bought
by a single attacker or easily found in the common
desktops of a group of collaborating individuals.

A. Throughput Evaluation on a Single Board

The evaluation campaign aimed at understanding how
fast our DES implementation actually is, has been con-
ducted on an Intel Core 2 Quad Q6600 endowed with an
nVidia GeForce GTX 260 with 896MB of GDDR3. This
board has 192 computing cores clocked at 576MHz and
is used on a PCI-Express 1.0 bus, since the motherboard
does not support the PCI-Express 2.0 specifications
in full. The system is running Gentoo Linux x86 64,
version 10.0 with the developer profile and the CUDA
Toolkit in use is version 2.2. All the collected results
have been averaged over 300 trials and consider also the
time needed to transfer the data between the GPU and
the host. The results on the standard implementation
of DES show a steady throughput regardless of the
number of blocks per kernel because of the very low
occupancy of the GPU memory resources. The results
presented in Table I show the maximum throughputs
achievable, through calling the kernel with the maximum
number of CUDA-blocks allowed (i.e. 65535), in order to
minimize the overhead induced by the kernel call to the
system driver. The trend varying the number of thread
per blocks shows that 64 threads are sufficient in order
to completely mask the access latencies to the shared
memory due to the contention on the 16 read ports.
Raising the number of threads per block over 64 does not
yield significant performance advantages, even though
the maximum throughput is reached at 128 threads
per block. The maximum throughput reached is 5.6
times faster than the fastest implementation available

on general purpose CPUs , i.e. the one contained in
OpenSSL [4] as shown in Table II. The results obtained

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 64 128 256 512 1024 2048

K
ey

s/
se

c

Number of thread blocks

64 Threads/block
128 Threads/block
192 Threads/block
256 Threads/block

Figure 3. Throughput in Mkey/s of the bit-sliced implementation
of DES on an nVidia GTX 260 device with different threads
configurations

from the bit-sliced implementation of DES, depicted in
Figure 3, show that the number of blocks per kernel call
impact significantly on the performances. This is mainly
due to the more resource hungry nature of the bit-
sliced algorithm which thus obtains higher benefits when
the graphic card is supplied with enough independent
blocks to cover the latencies due to the content for
the memory accesses. As far as the optimal number of
threads per block goes, 256 threads per block is the most
performant choice, proving that the CUDA architecture
is able to deal with an increased pressure on the register
file without problems, thus confirming the intuition given
in [8],that architectures having a large register file are
particularly well fit to run bit-slice implementations of
DES. The maximum speed achieved is 373.58 Mkeys per
second, which is 10 times faster than the reference bit-
sliced implementation available for CPUs. The reference
implementation taken is is a specially crafted assembly
implementation using SSE2 instructions and 128 bit
registers from the Intel Pentium 4 and greater line of
CPUs and is the one contained in John the Ripper [14],
the state of the art brute-forcer for general purpose
processors. We also notice that, in comparison with
the conventional implementation on graphic cards, we
achieve a 5x speedup, thus meeting the most optimistic
expectations and practically proving the viability of our
approach.

Table II
Throughput comparison of different implementations of

the DES cipher on CPU, GPU and FPGA hardware

DES Plain DES BS

[106key/s] [106key/s]

CPU 13.32 [4] 36.85 [14]

GPU 75.33 (our GTX260) 373.58 (our GTX260)

FPGA 216 [5] –

B. Cost Evaluation of a Bruteforcing Cluster

Given the throughput results for a single video card, let
us now consider the time and financial effort that either
motivated attackers or a group of common people in pos-
session of the correct hardware for other reasons, need to
invest to successfully break DES. Our aim is to evaluate
the effective cost of building a cluster of simple desktops
which can be used in order to break DES. To evaluate
the best tradeoff in terms of computational power we
assume to build PCs using common consumer grade
components and to fit two video cards per computer. All
the reference prices for this evaluation have been taken
from online retailers, without taking into account any
discount that could be obtained for a large order. The
overhead needed in order to build a computer able to
run our implementation of the bit-sliced DES algorithm
is 177 e.

Table III reports the results of our cost analysis.
The first column of the table reports all the models
available from the 200 series from nVidia together with
the number of cores available on the single board.

The second column reports the cost of a single board,
together with the maximum number of instruction per
second provided per unity of cost. The estimated in-
struction per second throughput for each card has been
calculated assuming that each core is able to compute an
instruction on a single clock cycle, which is a reasonable
assumption in our case, since all the instruction involved
in the brute-forcing are implemented in a single clock
cycle within the architecture. We did not consider as
a relevant feature the quantity of on board memory
provided by the boards since in none of them this
represents a constraint for our implementations. The
most cost efficient choice for an attacker is the GTX260-
216, a beefed-up version of the card used in our tests,
which includes an extra processor cluster and is able
to provide roughly 60% more instruction per cost unit
with respect to the top of the line models. Contrary
to common intuition, the fastest boards do not provide
the best tradeoff in terms of computing power per cost,
due to the rapid price drop of older models in the video
card market. The third column reports the number video
cards acquirable with a budget identical to the one
used to buy all the components for COPACOBANA [5]
(8980e). The figures provided take into account the
overhead of 177e(November 2009) needed for every two
cards in order to build a working cluster. The last
column reports the practical breaking time achieved on
a cluster build with off the shelf hardware, using our
implementation of the DES algorithm: as it can be seen,
the best solution obtained is able to find a DES key in
18 days, thus proving the feasibility of such an attack.

We stress that the brute-forcing power scales linearly
without loss among the different machines since no

Table III
Summary of the cost analysis oriented at building a DES breaking cluster with off-the-shelf components (177e

overhead to build the hosts included)

nVidia Video Card Model Graphic Card Cost Number of Video Cards Affordable DES Breaking

Device Cores Cost IPS/e with COPACOBANA budget Standard [day] Bitsliced[day]

GTX295 480 308 897.66 22 100 20

GTX285 240 180 864.00 32 122 24

GTX275 240 136 1117.06 40 100 20

GTX260 192 96 1005.38 44 125 25

GTX260-216 216 110 1462.50 48 90 18

GTX250 128 73 1294.03 56 115 23

communication at all is required among the nodes of the
breaking cluster. This breaking speed is achieved with 24
nodes of the cluster with two boards each, as reported
in Table III, thus it is more than reasonable to assume
that, in the case the attacker decides to exploit a number
of seized machines through a BotNet (whose typical size
may scale up to tens of thousands of nodes), the time
needed to break a DES encryption can be brought down
to a few hours, fast enough to avoid being noticed by the
owners of the infected machines. The fact that the only
libraries needed in order to run the cracking program are
indeed the video card drivers, makes the computational
resource theft even easier since every system endowed
with a properly configured CUDA enabled video card
can be successfully exploited without any preparation.

VI. Conclusions

In this paper, we propose the first GPU-based imple-
mentation of the DES encryption algorithm geared to-
ward password breaking, and provide and experimental
evaluation to prove how a single GPU outperforms a
single CPU by a factor of 10. We also provide insights
on the cost of practical DES breaking using our imple-
mentation, showing how, for a moderate cost (equivalent
to the hardware breaker COPACOBANA) and without
the need of technical expertise, we can recover a DES
key in as little as 18 days. Given the commodity nature
of the hardware employed in our bruteforcer, even a
group of people without specific technical knowledge, but
with access to typical “gamer”personal computers, could
easily mount an attack against a DES-protected secret.

Acknowledgements

This work was partially supported by MIUR in the
framework of the PRIN SESAME project.

References

[1] National Institute of Standards and Technology (NIST),
“FIPS-46-3: Data Encryption Standard (DES),” http://
www.itl.nist.gov/fipspubs/, May 1999.

[2] NIST, “Announcing Approval of the Withdrawal of
Federal Information Processing Standard (FIPS) 463,”
Federal Register, vol. 70, no. 96, pp. 28 907–28 908, May
2005.

[3] M. Loukides and J. Gilmore, Eds., Cracking DES: Se-
crets of Encryption Research, Wiretap Politics and Chip
Design. Sebastopol, CA, USA: Electronic Frontier
Foundation – O’Reilly & Associates, Inc., 1998.

[4] The OpenSSL Project, “OpenSSL: The open source
toolkit for SSL/TLS,” www.openssl.org, Oct. 2009.

[5] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and
A. Rupp, “Cryptanalysis with COPACOBANA,” IEEE
Trans. Comput., vol. 57, no. 11, pp. 1498–1513, 2008.

[6] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi,
“Design of a parallel aes for graphics hardware using the
cuda framework,” in IPDPS. IEEE, 2009, pp. 1–8.

[7] S.-G. Brett, C. Marco, C. Lorenzo, G. Bob, S. Martin,
K. Richard, K. Chris, and V. Giovanni, “Your Botnet
is My Botnet: Analysis of a Botnet Takeover,” in ACM
CCS, Nov. 2009.

[8] E. Biham, “A Fast New DES Implementation in Soft-
ware,” in FSE ’97: Proceedings of the 4th International
Workshop on Fast Software Encryption. London, UK:
Springer-Verlag, 1997, pp. 260–272.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell, “A survey
of general-purpose computation on graphics hardware,”
Computer Graphics Forum, vol. 26, no. 1, pp. 80–113,
2007.

[10] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scal-
able parallel programming with cuda,” ACM Queue,
vol. 6, no. 2, pp. 40–53, Mar. 2008.

[11] NVIDIA Corporation, “CUDA Technology,” http://
www.nvidia.com/CUDA, Sep. 2008.

[12] G. Agosta, A. Barenghi, F. D. Santis, A. D. Biagio,
and G. Pelosi, “Fast disk encryption through GPGPU
acceleration,” in PDCAT. IEEE Computer Society,
2009, pp. 102–109.

[13] M. Kwan, “Reducing the Gate Count of Bitslice DES,”
Cryptology ePrint Archive, Report 2000/051, 2000, http:
//eprint.iacr.org/.

[14] OpenWall Project,“John the Ripper Password Cracker,”
http://www.openwall.com/john/, Oct. 2009.

