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Abstract

Identity based cryptography offers a number of func-
tional advantages over traditional public key cryptosys-
tems and has attracted much research interest in the last
few years. The computational costs demanded for such
functionalities result to be significantly greater than those
bounded to other methods. The overall efficiency of identity
based protocols and applications is dominated by the com-
putation of the main used primitive, namely the Tate pairing.
The paper focuses on the design of a parallel hardware ac-
celerator for the computation of the Tate pairing that makes
use of arithmetics over finite fields with a large prime char-
acteristic. Performance measurements are discussed and
compared with previous solutions based on different defi-
nitions and algorithms.

Keywords: Tate pairing, identity-based cryptography, hard-
ware accelerator, FPGA

1 Introduction
In recent years, the concept of pairings in number the-

ory and algebraic geometry has arisen a significant research
interest due to their attractive mathematical properties.Pair-
ings have been successfully applied in the context of elliptic
curve cryptography [9,10,13] and made possible the devel-
opment of a number of new applications and protocols in the
context of the identity based cryptography [13]. Identity-
based cryptosystems are based on the idea that the public
key itself is generated from some publicly identifiable in-
formation, such as a person’s e-mail address. In such a way,
before starting a transaction any user does not need to re-
trieve the certified copy of the recipient’s public key from a
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public repository.
The practical realization of all the identity based pro-

tocols relies on the efficient implementation of pairings,
and many research efforts have been made for the algorith-
mic optimization of the operational description of the pair-
ing [4, 6, 16, 22, 26]. Nevertheless, the computation of pair-
ing remains a relatively complicated and computationally
intensive operation. Thus, dedicated hardware accelerators
provide an ideal platform for pairing computation since, if
scheduled carefully, many of the most intensive operations
can be performed in parallel. A FPGA platform represents a
good choice with respect to traditional VLSI devices thanks
to its reconfigurable flexibility, rapid prototyping, reduced
development costs and shortened time-to-market.

Publicly available results about hardware implementa-
tions of pairings are limited to designs that make use of finite
fields with characteristic two or three [8,18]. In the wake of
results about the generation of general elliptic curves over
fields of large prime characteristic [5, 14], the choice fol-
lowed in the current paper of implementing a pairing us-
ing a large prime arithmetic, becomes more than appropri-
ate and suitable to support also other public key schemes
like the standard Elliptic Curve Digital Signature Algorithm
(ECDSA) or the Diffie Hellman protocol variants.

The rest of this paper is organized as follows. Section 2
places mathematical preliminaries and algorithms used for
the pairing computation. Section 3 outlines the design of the
employed arithmetic functional units. Section 4 describes
the followed design methodology and Section 5 provides
the experimental evaluation of the proposed coprocessor de-
sign. Finally, Section 6 draws the conclusions and points
towards future research directions.

2 Mathematical Preliminaries

In this Section we give an overview of the mathematics
that underpin the definition of the Tate pairing primitive over



elliptic curves defined over finite fields with prime charac-
teristic. LetFp denote the finite field built over the equiva-
lence classes generated byZ modulop, wherep is a prime
number. Assumingp 6= {2, 3} we can denoteE (Fp) as the
elliptic curve represented by the Weierstrass equation:

y2 = x3 + ax + b 4a3 + 27b2 6= 0 a, b ∈ Fp (1)

The internal commutative composition law on the set of el-
liptic curve points is given by the well known secant and
tangent rule [29]. Ther-th torsion subgroup, E (Fp)[r], is
the set formed by all the points ofE (Fp) with order equal to
r. In order to describe the property of such groups letn be
the number of points overE (Fp). Assumer | n ∧ r2 ∤ n,
and considerk (from now on calledembedding degree) to
be the minimum field extension such thatr | pk−1. An im-
portant theorem by Balasubramanian and Koblitz [2] states
that, as long asr ∤ p−1, ther-th torsion groups are properly
contained inE (Fpk) if and only if r | pk − 1.

From a functional point of view, a pairing can be seen
as a bivariate function which maps pairs of elements of an
additive groupG1 to an element of a multiplicative group
G2 with the same order:

G1 ×G1 7→ G2

The main property of this mapping is somewhat similar to
a multiplicative law which must be efficiently computable,
distributive with respect to the sum ofG1 as in equation 2,
and such as the DLP over both groups is computationally
hard. LetP , Q, P1, P2, Q1, Q2 ∈ G1:

e(P1 + P2, Q) = e(P1, Q) e(P2, Q)

e(P, Q1 + Q2) = e(P, q1) e(P, Q2) (2)

Besides the difficulty of the DLP, the main security assump-
tion about pairing functions is known as bilinear Diffie-
Hellman problem (BDHP) [10]. The only groups over
which it is possible to define such pairing, while granting
computationally hard DLP and BDHP, are the set of points
of an elliptic curve, thus assumingG1 = E (Fpk), and the
elements of the multiplicative group of the underlying field,
therefore assumingG1 = F∗

pk .
For a utter formal explanation of the construction of the

pairing over points of elliptic curves, the reader is referred
to [9, 29]. As far as the objectives of the current paper are
concerned, letP andQ be two torsion points such thatP ∈
E (Fp)[r], Q ∈ E (Fpk)[r] and {µr} be the group of the
r-th roots of unity overF∗

pk , then the cryptographical Tate
pairing is defined as:

e : E (Fp)[r]× E (Fpk)[r] 7→ {µr}

e(P, Q) = fP (DQ)
pk

−1
r (3)

wherefP (DQ) is a function depending on the coordinates
of P andQ, and can be calculated with an iterative algo-
rithm first proposed by Miller in [22]. The final exponenti-
ation introduced in the above definition has the purpose of

selecting a single representative from a set of results corre-
sponding to equivalent pairs of elliptic curve points. The
above definition is also referred in literature as reduced Tate
Pairing.

2.1 Pairing Algorithm Selection

Since the Tate pairing has gained interest for crypto-
graphical purposes, many efforts have been made in order
to speed up the computation of the bilinear function, which
is quite complex in itself. The basic algorithm consists of
an extension of the classical double and add scheme, fitted
with additional operations to specifically evaluate the pair-
ing [22]. Subsequent refinements and optimizations were
developed by [4, 6, 16, 26] through the elimination of un-
needed computations such as the denominator of the upda-
tion formula and the elimination of the last round of the al-
gorithm, thus resulting in a refined form called BKLS.

Thorough the introduction of bounds on the kind of
curves and on the underlying finite fields, the regularity
added to the system structure is exploited in order to fur-
ther speed up the algorithm. Namely the Eta [3],ηt [3, 8]
and Ate [17] algorithms are examples of this kind of opti-
mizations aimed at simplifying and generalizing the calcu-
lus without weakening the security level of the system.

The choice of the parameter sizes involved in the imple-
mentation of the algorithm has to be done matching cur-
rently accepted security levels. A1024-RSA binds the tor-
sion group size and the extended field order to ber ≥ 2160

andpk ≥ 21024. In order to obtain roughly the same compu-
tational difficulty on both the DLP and the BDHP the tuning
of the parameters should balance the two field sizes. More-
over, once chosen the desired values ofpk andr the embed-
ding degreek should not exceed the ratio between them in
order to correctly exploit the advantage of smaller operands,
while taking into account the higher number of basic opera-
tions required to perform an operation in the extended field.

The choice of supersingular curves binds the embedding
degree to be within{6, 4, 2} for fields with characteristic
3, 2 andp > 3, respectively. Therefore, as far as thek > 2
case goes, it is advisable to stick to ordinary curves overFp,
where the extensionFpk is a pairing friendly field [19], i.e.
p = 1 mod 12 andk = 2i3j. This kind of field structure al-
lows an easy building of a quadratic or cubic tower of poly-
nomial extensions to represent the field elements, which re-
sults in significant arithmetical speedup. Effective methods
of pairing friendly curve generation as the ones described
in [14] are able to easily build curves respecting the afore-
mentioned assumptions.

Literature works on building coprocessors for the calcu-
lation of pairings are, up to now, limited to Eta andηt pair-
ings which are specific toF3m andF2m [8, 24, 27], while
there is still no publicly available implementation onFp.

The choice ofFp arithmetics is bound to the fact that
there is no inner structure of the field other than the one de-



fined by common sorting of the equivalence classes, while
polynomial fields show a richer algebraic structure. A pio-
neeristic work by Coppersmith [12] pointed out that there is
a possibility of exploiting some peculiarity ofF2m andF3m

in order to break the DLP in a faster way than brute force,
therefore forcing all the related cryptosystems to raise the
filed size with a consequent loss of efficiency.

Setting Fp arithmetic as the one to build the system
on, narrows the algorithm choice down to two possibilities:
the refined BKLS from [25] and the Ate pairing developed
in [17]. In this work we report the results regarding the hard-
ware implementation of pairing over a general elliptic curve
following the BKLS algorithm as described in [25], where
k = 2, p ∼ 2512 andr is a 160-bits Solinas prime (with
hamming weight equal to three), in such a way to have a
security level equivalent to the 1024-RSA one.

The operational description of the considered algorithm
is reported at a high level specification in Algorithm 2.1.

Algorithm 2.1: Refined BKLS Algorithm [25].

Input: P ∈ E (Fp)[r], Q ∈ E (Fpk)[r], t = ⌈log2(r)⌉,
r = (rt−1 . . . r0)2

Output: m = a + ib ∈ F∗

pk

begin1

T ← P ; m← 1; r ← r − 12

for i = t− 1 down-to 0 do3

T ← 2T // loop body w/o If statement:4

m← m2 · f2T (Q) // 18 mul.s and 24 add.s/sub.s5

if mi = 1 then6

T ← T + P // If statement:7

m = m · fT+P (Q) // 26 mul.s and 16 add.s/sub.s8

return m
(pk

−1)
r9

end10

2.2 Final Exponentiation

Coming to the final part of the algorithm, the exponenti-
ation to(pk − 1)/r needs an efficient way to lower as far as
possible the number of multiplications involved in the com-
putation. The most efficient method to obtain this on a plain
finite field is known as Lucas laddering technique [26]. A
schematic description of the operation performed in the Lu-
cas chains is sketched by Algorithm 2.2.

Lucas sequences are a natural extension of the square
and multiply algorithm. In the considered selection of pa-
rameters the computed pairing value is an element of the
field Fp2 . The quadratic extension field elements are repre-
sented as first degree polynomials since the following rela-
tion holds:Fp2 ∼= Fp(i) wherei ∈ Fp2\Fp, i2 + 1 = 0 and
p ≡4 3. Therefore, assumingfP (DQ) = c + id, c, d ∈ Fp

and exploiting the fact that the pairing value has unitary
norm, the final pairing value is computed as

fP (DQ)
p2

−1
r = ((c+id)p−1)m = ((c− id)2)m = (a+ib)m

wherem = p+1

r
anda = c2 − d2, b = −2cd.

Hence, the calculus of the final exponentiation is final-
ized as(a + ib)m = Vm(2a)/2 + Um(2a)ib, whereVm and
Um are them-th terms of the Lucas sequence which can be
built according to the Algorithm in 2.2.

Algorithm 2.2: Lucas Laddering [26].

Input: f = a + ib ∈ Fp2 , a, b ∈ Fp, i ∈ Fp2\Fp,
i2 = −1 p ≡4 3; t = ⌈log2(m)⌉,
m = (mt−1 . . . m0)2

Output: (a + ib)m

begin1

u0 ← 0; u1 ← 1 // Each iteration requires:2

v0 ← 2; v1 ← 2a // 4 mul.s and 4 add.s/sub.s3

for i = t− 1 down-to 0 do4

if mi = 1 then5

v0 ← v0v1 − 2a; v1 ← v1
2 − 26

u0 ← u0u1 − 2a; u1 ← u1
2 − 27

else8

v1 ← v0v1 − 2a; v0 ← v0
2 − 29

u1 ← u0u1 − 2a; u0 ← u0
2 − 210

return v0/2 + u0bi11

end12

3 Finite Field Arithmetic

The arithmetic operations that are required for the com-
putation of thee(P, Q) value are addition, subtraction and
multiplication over the ground fieldFp. The elements ofFp

are represented using a canonical unsigned binary coding
with a convenient resolution to accommodate all the values
in the range[0, p− 1]. To comply with the current security
level requirements and the choices described in the previ-
ous section, in our implementation the primep is a512-bit
number, while the quadratic extension field arithmetic oper-
ations are reduced to a sequence ofFp computations among
coefficients of the polynomials that represents elements in
Fp2 .

An effective and efficient solution for the enforcement of
integer arithmetic functional units with operands of the size
of several hundred bits is compelled to split the design of
the unit in order to manage smaller portions of the operands
which must later be conveniently processed.

3.1 Modular Addition

A single component has been designed in order to per-
form both modular addition and subtraction. The functional
unit manages the subtraction operation simply converting
on the fly the second operand into two’s complement repre-
sentation. Modular reduction is performed with three512-
bit adders: the first one sums straightly the two operands,
while the other two are structurally pipelined with the for-
mer and compute both the sum and the subtraction of the



intermediate result with the modulus. The selection of the
correct value is performed through looking at the MSBs
of the three results. To cope with the synthesis of a fast
512-bit adder, the adopted solution consists of a core adder
component with64-bit operands used to iteratively com-
pute the sum of the8 slices of the original numbers; hence
the final result is correctly rearranged through a ripple-carry
strategy. The overall computation time can be summed up
into 8∆T1 + ∆T2, where∆T1 is the time needed by the
core adder to perform a word-wise operation while∆T2

refers to the delay needed by the second and third adder to
end their own computation and bring out the correct result.
Amidst a variety of design choices for fast adders, a Carry
Look-Ahead design [21] offers the minimum latency solu-
tion through precomputing all the carries in a parallel fash-
ion as soon as the operands are available. The CLA design
allows a number of possible configurations of the carry pre-
diction tree which exhibit different figures of merit in terms
of latency and number of gates. The optimum time for a
carry prediction network is fully logarithmic in the number
of the bits of the operands.

Having determined, as reported in the next section, the
necessity of a single adder unit, we concentrated on ob-
taining the fastest possible design, regardless of the area.
Among all the CLA designs only two are able to achieve
this timing result, namely the Kogge and Stone design [20],
and the Slansky one [28]. The latter option resulted to be
impractical because it requires a large fan-out for the logic
gates involved in the prediction network, making hard to
obtain an efficient synthesis by means of commercial FPGA
design tools. The Kogge and Stone does not suffer from any
fan-out or fan-in handicap at the expense of a larger area due
to the increased number of gates and a different planning of
the prediction rules. Still, the Kogge and Stone design re-
mains the fastest CLA circuit as far as radix-2 implementa-
tions of adders go. Higher radices solutions are not suitable
for FPGA synthesis due to the excessive wiring required.

3.2 Modular Multiplication

The most used method to compute multiplications over
a finite field is the well known technique first proposed by
Montgomery in [23]. Such a method enables to efficiently
compute a modular multiplication without falling back on
an explicit division, but using only an iterated series of addi-
tions and right-shifts. The operands of the multiplicationare
supposed to be elements of the finite field, previously con-
verted into the Montgomery domain representation by com-
puting a convenient power of two multiple of the operand.
The advantage in doing so is that the results of a modular
addition, subtraction or a multiplication are themselves in
the Montgomery domain. When considering the computa-
tion of a large number of modular multiplications, as is the
case with the Tate pairing calculation, it is more efficient
to assume that all the arithmetic operations are performed in

the Montgomery domain through an initial conversion of the
input coordinates of Algorithm 2.1.Montgomery algorithm
represents the most efficient way to compute modular mul-
tiplications, assuming we are dealing with a generic prime,
which is our case.

As in the case of functional units for addition and sub-
traction, the size of the operands involved in the multipli-
cation forces the design of the multiplier to be obtained by
composing smaller functional blocks which process the two
large factors using a smaller integer multiplication unit and
a word-by-word approach. The FPGA implementation used
in the current work adopts a multiplier most similar to the
Coarsely Integrated Operand Scanning (CIOS) scheme re-
ported in [11]. The VHDL code takes advantage of the inte-
grated18× 18 ASIC multipliers present on the used FPGA
platform, which is more extensively described in Section 5.

As described in the following Sections, the methodology
used to design the pairing FPGA coprocessor needs an esti-
mate of the execution time and of the silicon area consump-
tion for each functional unit employed in the circuit. Execu-
tion time and occupied area for the Montgomery multiplier
were evaluated by varying the word-length of the single pre-
cision multiplier involved in the CIOS design and synthesiz-
ing the corresponding circuit on our target platform for512-
bit input operands. The obtained results favored the64-bit
core multiplier model with respect to a32-bit one, because
of being able to perform the computation in one third of the
time while using only20% more area.

4 Processor Design
An hardware implementation of the pairing algorithm

can expose a large amount of intrinsic parallelism in the ex-
ecution of the computation by using replicated functional
units and a careful scheduling analysis.

4.1 Methodology

The followed approach represents all the steps shown
in Algorithm 2.1 in terms of the base field arithmetic op-
erations and organizes them in a Direct Acyclic Graph
(DAG) which is subsequently employed to perform various
scheduling techniques. In this way an exhaustive schedul-
ing campaign can be conducted to detect the best resource
configuration trade-off between total execution time and re-
quired circuit area.

For an FPGA implementation such extraction would not
have been possible by feeding the code through already
available C-to-VHDL translators because their way of pro-
ceeding is unaware of the full structure of the algorithm.

Hence, a software scheduling tool has been developed to
represent an algorithm as a DAG. This graph is first sched-
uled without any constraint on the resources in order to ob-
tain an estimate of the maximum sensible number of func-
tional units to employ in the exploration. For each possi-
ble combination of units, the software reschedules the algo-



rithm with a resource-constrained approach and a list-based
heuristic [15] in order to obtain the number of steps (ticks)
needed and a reasonable approximation of the area taken by
the circuit, making use of area figures of each functional
unit fed as configuration options [7]. The final output of
the tool is a tick-accurate description of the progression of
the computation along with two further configuration files
which contain a timeline of each of both the needed memory
registers, which must be instantiated to memorize the inter-
mediate results, taking care to maximize their reuse, and a
time mapping of the operations executed by each replicated
functional unit.

The VHDL code corresponding to the datapath pin-
pointed by the scheduling tool is automatically generated
making use both of information about the employed func-
tional units and of the memory registers.

The microcontroller needed to drive the datapath oper-
ations is also automatically generated as a fully hardwired
Finite State Machine (FSM). The generator places each sig-
nal according to the tick-accurate description of the com-
putation asserting each signal according to the latencies of
each functional unit, also feeded as a configuration option
in terms of number of ticks.

The overall component corresponding to the Tate pairing
algorithm as depicted in Algorithm 2.1 is shown in Fig. 1.
It makes use of a single datapath component and a master
micro-controller (Fig. 2), which first loads the input data in
a32-bit word-wise fashion, setting up constants for Alg. 2.1,
and then awakes the correct FSM corresponding to the basic
block which has to be executed next. At the end of the com-
putation the pairing value is memorized in a pair of internal
registers and is serially transferred to the output lines when
a signal is asserted from outside on a proper pin.

There are six different FSMs each of which is bound to a
specific basic block of high level code, namely: loop body
excluding the branch (lines 4–6 of Alg. 2.1, ML in Fig. 2),
the branch code alone (lines 7–9 of Alg 2.1, MB in Fig. 2),
pre-calculations needed to set up Algorithm 2.2 (Lpre in
Fig. 2), high-bit ladder step (lines 5–7 of Alg. 2.2, Lc1 in
Fig. 2), low-bit ladder step (lines 8–10 of Alg. 2.2, Lc0 in
Fig. 2) and final post-processing block of Lucas ladder (line
13 of Alg. 2.2, Lpost in Fig. 2).

4.2 Exploration

The starting point for the exploration of the architectural
solution space was the scheduling of the loop body of the
pairing algorithm (lines 4–6 of Alg. 2.1), since both it is the
most time consuming part and there are no obvious ways
to schedule it optimally by hand. We decided to initially
ignore the branch instruction present in the algorithm since
it is generally executed only few times; in our case only
once.

The values of estimated areas which were fed to the
scheduling tool for the addition and multiplication func-

tional units were obtained in terms of occupied slices, syn-
thesizing each unit separately with the Xilinx suite ISE9.1.
In addition to the aforementioned arithmetical units, a third
FU has been realized in order to perform move operations
between registers. This FU, called from now on assigner, is
composed by a simple register connected to both read and
write buses and is able to work as a bridge. The choice of
introducing a buffer was due to the possibility of pipelining
the assignment operations.The corresponding latencies and
area figures for the functional units designs described are
shown in Table 1.

Table 1. Estimated characteristics of the func-
tional units.

512-bit Unit Latency [ticks] Area [est. slices]]

Adder 9 2, 560

Multiplier 173 2, 370

Assigner 1 512

This resulted in a sensible estimate of the area fluctua-
tions by defect, since the actual sizes provided by a synthe-
sis tool are surely greater than the net sum of the slices oc-
cupied by each FU. The potential worsening in area figure
is due to the exhaustion of the dedicated wiring resources
of the FPGA, which leads to waste slices to route wires.
As far as the simulations go the read and write buses were
modelled as functional units with unitary latency. The area
figures shown in Tab. 1 report an adder unit area greater
than the one of the multiplier. This is due to the automatic
exploitation by the synthesis tool of the ASIC multipliers
present on the platform, as it was originally assumed at de-
sign time. This assumption does not bind the implementa-
tion to a specific FPGA model, since most Virtex FPGAs
incorporate such kind of ASIC hardware.

The first round of simulations was targeted at finding out
the optimal configurations with unbounded resources in or-
der to generally assess the most optimistic achievable goals.
The minimum execution time combinations can be sorted
out as a function of the number of used modular multipli-
ers, since this component is by far the most expensive one
in terms of ticks needed for the execution. The obtained
results are presented in Table 2.

A widely adopted architecture design is the one based on
two read and one write bus as shown in Figure 1. Further
simulation results not shown in the reported table put forth
the adoption of only one adder since performance losses
are negligible. Table 3 reports the performance losses w.r.t.
the unbounded resource optimal solutions, when consider-
ing only two read buses, one write bus and a single adder.

It is evident that restraining the architecture to have only
a single adder and three buses does not impact in a signif-
icant way on performances, except for the five multiplier
case, where the loss of19% is not negligible, though not
excessive when balanced with the projected area savings



Table 2. Minimum tick schedules of the pair-
ing loop body with unbounded resources.

Resources Time Area

× Read Write + [ticks] [est.slices]

1 1 1 1 3, 130 6, 621

2 2 1 3 1, 575 15, 463

3 2 1 2 1, 078 16, 102

4 6 2 3 909 22, 214

5 1 1 3 762 25, 581

6+ 2 2 2 758 26, 222

Table 3. Minimum tick schedules of the pair-
ing loop body with 2 read buses, 1 write bus
and 1 adder.

Mul Time [tks] Perf. loss [%] Area [est.slices]

1 3, 130 0 6, 621

2 1, 591 1.02 9, 995

3 1, 083 0.46 13, 368

4 916 0.77 16, 741

5 907 19.03 20, 114

6 774 2.11 23, 487

which also are around20%, thus leading to a conservation
of the area-time product. The most promising solutions ap-
pear to be the ones with three, four and five multipliers, as
far as the area-time product goes.

In order to further weed out other solutions, the fact that
the chip will be executing also the Lucas laddering algo-
rithm must be considered. The Lucas algorithm does not
benefit from having more than four multipliers, since there
are no more than4 parallel multiplications, while employing
only three units saps performances more than30%.

Finally, a preliminary post place and route synthesis of
the overall coprocessor as described in the next section,
done with a single micro-controller in order to explore mul-
tiple configurations, aimed to determine a reasonable esti-
mate for the reachable clock rates. The results showed a
loss of38% in the clock rates for the model with5 multipli-
ers, with respect to the one with4, resulting in worse global
timings and thus pointing further to the latter solution as the
most efficient one.

4.3 Structure

The chip is built around a classical two read, one write
512-bit wide buses architecture, as shown in Figure 1, since
a completely interconnected architecture would need an
enormous quantity of wires which is unmanageable with the
currently available synthesis tools.

The datapath is built hooking the functional units and

the registers to the buses through banks of tristate buffers.
This solution allows the functional units to be fully detached
from the buses while they are computing, thus lowering
the capacitive load on the line and resulting in a quicker
stabilization of the signals. The functional units, namely
4 multipliers, 1 adder and1 assigner, also include buffers
both at the inputs and outputs in order to preserve the val-
ues when disconnected from the buses. The register alloca-
tor described in the previous section calculated the number
of needed512-bit wide registers as ten. The memorization
units are hooked one by one to the buses in order to be read
and written independently without mutual blocking, which
would have occurred in an alternate solution using a register
file with a single set of read-write ports. The tristate banks
are driven directly by microcontrollers which use them to
correctly regulate the computation flow, while maintaining
synchrony with the clock signal.

Due to the large width of the operands, to provide inputs
and extract computed values from the chip, the coproces-
sor is equipped with load and store units which sequentially
transfer input and output operands in32-bit-wide words.
The activation of the load units is triggered by the mas-
ter microcontroller when thestart signal (Fig. 1) is issued
from outside the chip, while the write units are activated by
a write resultsexternal signal which enables the outputs to
be exposed.

Reset

Start
Start

Bus

Control

Done

ML Controller

MB Controller

Lpre Controller

Lc0 Controller

Lc1 Controller

Lpost Controller

Start

Start

Start

Start

Start

Done
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Counter

Master

Controller

Count
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Figure 2. Master microcontroller structure.

5 Experimental Results
After fully determining the structure of the coprocessor,

a well known and widely used platform has been used in
order to obtain a full synthesis FPGA implementation. The
final result represents the first publicly available data about
a FPGA coprocessor for the Tate pairing overFp. The cho-
sen development toolchain is Xilinx ISE9.1.03i on Linux
OS for amd64 architecture; the synthesizer is configured to
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Figure 1. Structure of the complete coprocessor chip.

use area as the target figure for synthesis optimization and
instructed to use a balanced criterion for mapping.

The target chip for implementation was Virtex-2 8000
(XC2V8000-5FF1152), due both to its wide diffusion and
to the fact that it does not include unnecessary (at least for
our purpose) ASIC hardware on the chip in contrast with
the the more expensive Virtex 2 Pro line, used in other liter-
ature works. Virtex 2 8000 contains46592 slices arranged
in 112×104 4–slices CLB and168 18×18 ASIC multiplier
blocks, which are automatically used in order to implement
the core of the modular multipliers.

Table 4. Pairing HW implementations.
Solution Algorithm k Operand MOV No. of

Size[bits] Level Mult.s

Fp (Ours) BLKS 2 512 1, 024 4

F3m [18] DL 6 154 924 18

F3m [8] ηt 6 154 924 1

F3m [24] ηt 6 154 924 3

A comparison of our synthesis result with the cur-
rent hardware achievements for Tate pairing calculation is
summed up in Table 5. Table 4 reports a list of the system
parameters adopted for each of the cited implementations.
Particular care should be exercised when comparing results
over different fields since the differences in arithmetics and
operands size impact dramatically on the type of allowed
optimizations.

The correct metric which must be used to compare im-
plementations over different fields is the security level guar-
anteed for the DLP over the employed fields (referred in
Table 4 as MOV Level).

Among the reported works, the one described in [8] was
targeted at building a small coprocessor, also through ex-

Table 5. Post Place & Route synthesis results.

Solution FPGA Area Freq. Time

model [Slices] [MHz] [ms]

Fp (Ours) V2 8000 33, 857 135 1.61

F3m [18] V2Pro125 55, 616 15 0.85

F3m [8] V2Pro4 1, 888 147 0.22

F3m [24] V2Pro4 10, 000 70 0.18

ploiting the ASIC hardware present on the chosen Virtex 2
Pro 4 FPGA, thus resulting in a significantly compact ar-
chitecture at the cost of sacrificing flexibility in the choice
of the platform. The work is based on a single multipur-
pose unit, in order to further save area, thus resulting in a
very compact design which, however, is not able to exploit
the intrinsic parallelism of the architecture. An example of
partial exploitation of parallelism is given by [18], where
the operations overF3mk were analyzed through a hand-
made scheduling thus conceiving a special multiplier unit
designed to work with polynomials. This yielded a particu-
larly large area usage and cut down the maximum working
frequency due to complex critical pathways. In the work
reported in [24] a semi-automatized exploration of the so-
lution space was conducted, leading to an analysis of the
possible tradeoffs both oriented to throughput and area. The
reported solution is the one targeted to speed, regardless of
area savings.

6 Concluding Remarks
The results illustrated in this paper show that it is pos-

sible to build a coprocessor for the calculation of the Tate
pairing overFp and reach a computation time within one
order of magnitude from the ones overF3mk , and therefore



well in the range of usability. To our knowledge, ours is
the first realistic result for the HW computation of the Tate
pairing over a prime fieldFp. This is particularly interest-
ing when considering the greater intrinsic resilience to at-
tacks of plain fields opposed to the polynomial ones. The
main issue with this coprocessor is the large occupied area,
mainly due to the complex wiring required during the place
and route phase, which is caused by the inner architecture
of the target FPGA. In particular, the maximum size of a
slice array on the chip is of448 cells, thus forcing a signif-
icant waste of area for wiring (around25%); this issue can
be addressed both by employing a smaller number of mul-
tipliers, at the expense of performance, and by re-targeting
the synthesis to an ASIC platform which can freely orga-
nize its layout. An interesting aspect is the fact that there
is still enough space on the FPGA to place additional con-
trollers which exploit the512-bit wide Fp arithmetics and
implement other IBE schemes or the ECDSA standard, thus
obtaining far greater security levels.
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