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Abstract

Web servers often need to manage encrypted transfers of data.

The encryption activity is computationally intensive, and exposes

a significant degree of parallelism. At the same time, cheap

multicore processors are readily available on graphics hardware,

and toolchains for development of general purpose programs are

being released by the vendors. In this paper, we propose an

effective implementation of the AES-CTR symmetric cryptographic

primitive using the CUDA framework. We provide quantitative data

for different implementation choices and compare them with the

common CPU-based OpenSSL implementation on a performance–

cost basis. With respect to previous works, we focus on optimizing

the implementation for practical application scenarios, and we

provide a throughput improvement of over 14 times. We also pro-

vide insights on the programming knowledge required to efficiently

exploit the hardware resources by exposing the different kinds of

parallelism built in the AES-CTR cryptographic primitive.

1. Introduction

Many modern e-banking and e-commerce scenarios need to
handle encrypted data to provide secure communications with the
users. The encryption and decryption of data is a computationally
intensive task, and takes an heavy toll on the computational
resources offered by a server. Since the throughput obtainable
from a serving endpoint is drastically cut down when using strong
cryptographical algorithms to secure the sessions, it is sensible
to build dedicated hardware-software accelerators with both an
affordable cost and a great ease of integration.

Meanwhile, the aggressive competition for the Graphics Pro-
cessing Unit (GPU) market is driving these architectures towards
increasing levels of hardware parallelism, while containing the
costs. Since these platforms are now supported by development
toolchains which allow the implementation of general purpose
software, they become a prime choice for the implementation of
computationally demanding algorithms.

AES is the most popular symmetric key cryptographic algo-
rithms, offering a high degree of parallelism, which can be effec-
tively exploited through natively parallel architectures. Nonethe-
less, current cryptographic solutions need to be carefully reimple-
mented in a fashion fit for parallel execution, in order to reach
a better cost/performance trade-off with respect to the traditional
CPU-based implementations.

In a typical two or three tier enterprise oriented architecture,
the most common choice for implementing a cryptographically-
enabled first tier is Apache [1] and OpenSSL [2]. Apache has been
the most widespread webserver for the last decade [3]. It supports
almost every web application environment either directly or through
reverse proxy configuration. OpenSSL is the most common imple-
mentation of the SSLv2, SSLv3 and TLSv1 transport layer security

standards [4] and is recognized as the de-facto standard library to
be used in conjunction with Apache.

The binding between the two is realized through a module, aptly
named ModSSL [5], which directly maps Apache’s cryptographical
needs to OpenSSL functions thus allowing the prompt exploit of
any advance in the implementation of the underlying toolkit without
changing any of the webserver configurations. The typical size of
an object transferred during an SSL session is known to range from
35 KB (for HTML-only content) to 150 KB (for text and image
content, sent in a single HTTP 1.1 session) [6].

In the remainder of this paper, we address the issue of deploying
encryption primitives on the GPU hardware by providing a parallel
AES design targeting the NVIDIA GeForce 8 GPU family [7],
implementing them within the popular OpenSSL framework.

We explore several parameter choices realizing different imple-
mentations and offering insights on the programming perspective
that needs to be taken into account when implementing crypto-
graphic algorithms on graphics-oriented hardware.

An extensive experimental campaign supports our implementa-
tion choices and points out the trade-offs between the different
solutions.

The rest of this paper is organized as follows. Section 2 provides
an overview of the AES block cipher and its modes of operation.
Section 3 describes the GeForce GPU family, its programming
model, and the design of our parallel AES. Section 4 provides
an experimental evaluation of the parallel AES implementations,
while Section 5 surveys the most closely related works in the field.
Finally, Section 6 provide some conclusions and points out some
directions for future work.

2. Overview of the AES Block Cipher

The Advanced Encryption Standard (AES) [8] is a symmetric
cryptographic algorithm originally requested and adopted by the
National Institute of Standards and Technology (NIST) for replac-
ing the Data Encryption Standard (DES) [9]. AES corresponds to a
block size restricted version of the Rijndael [10], an iterated block
cipher, which can encrypt and decrypt plaintext blocks of size 128
bits using a key size of 128-bit, 192-bit or 256-bit length. The
Rijndael cipher was adopted thanks to its ease of implementation on
a wide range of 8-bit to 32-bit processing platforms as well as being
amenable to high performance ad hoc hardware implementations.
Moreover, the clarity and compactness of its design allowed a wide
cryptanalytic scrutiny that helped to strengthen the confidence in
its security level. In software, AES can be implemented with a
fully symmetric structure using only bitwise XOR operations, table-
lookups and 8-bit shifts.

AES is well suited to be implemented on processors with a
parallel architecture. The cipher is designed for executing a number
of round transformations on plaintext where the output of each
round is the input of the next one. The number of rounds is
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determined by the key length: 128-bit uses 10 rounds, 192-bit 12
and 256-bit 14. Each round is composed by the same steps, except
for the first round where an extra addition of a round key is added
and for the last round where the last step (MixColumns) is skipped.
Each step operates on 16 bytes of data (referred as the internal
state of the cipher) generally viewed as a 4 × 4 table of bytes or
an array of four 32-bit words, where each word corresponds to a
column of the state table. The four round stages are AddRoundKey
(XOR addition of a scheduled round key for blending together the
key and the state), SubBytes (byte substitution by an S-box, i.e. a
lookup table for non-linearity design reasons), ShiftRows (cyclical
shifting of bytes in each row to realize a inter-word byte diffusion),
MixColumns (linear transformation which mixes column state data
for intra-word inter-byte diffusion).

The different steps of the round transformation can be combined
in a single set of table lookups, allowing for very fast implementa-
tions on processors having word length of 32 bits or greater [10].
Let us denote with ai, j the generic element of the state table,
with S[256] the S-box table and with • a GF (28) finite field
multiplication [10]. Let T0, T1, T2 and T3 be four lookup tables
containing results from the combination of the aforementioned
operations as follows:

T0[ai, j ] =







S[ai, j ] • 02
S[ai, j ]
S[ai, j ]

S[ai, j ] • 03







T1[ai, j ] =







S[ai, j ] • 03
S[ai, j ] • 02

S[ai, j ]
S[ai, j ]







T2[ai, j ] =







S[ai, j ]
S[ai, j ] • 03
S[ai, j ] • 02

S[ai, j ]







T3[ai, j ] =







S[ai, j ]
S[ai, j ]

S[ai, j ] • 03
S[ai, j ] • 02







These tables are used to compute the round stages operations as a
whole as described by the following equation, where kj is the j-th
word of the expanded key and ej is the j-th column of the state
table (seen as a single 32-bit word):

ej = T0[a0,j ] ⊕ T1[a1,j−1] ⊕ T2[a2,j−2] ⊕ T3[a3,j−3] ⊕ kj

The four tables T0, T1, T2 and T3 (called T-boxes from now
on) have 256 32-bit word entries each and make up for 4 KB of
storage space.

A KeySchedule procedure associated to the AES algorithm is
responsible for the computation of each round key kj given the
global input key k. In contrast with the round computation, the key
expansion operated by the KeySchedule procedure does not expose
significant parallelism. However, its result is computed once and
used for all the blocks of a given plaintext.

The AES, as any other block cipher, operates on blocks of fixed
128-bit length. Several modes of operation have been standard-
ized to manage the encryption of any plaintext, with arbitrary
length [11]. When the length of the plaintext is not a multiple
of the block size, it is necessary to add padding to the original
message up to a multiple of the block size.

Of the block cipher modes employed for guaranteeing confi-
dentiality, Electronic Code Book (ECB), Cipher Block Chaining
(CBC) and Counter Mode (CTR) are the most popular. The ECB
mode is easily parallelizable, since the original plaintext is split
into blocks that are independently enciphered with the same key.

However, the ECB mode is not adopted in cryptographic proto-
cols, since identical plaintexts blocks, encrypted with the same key
(as would happen when enciphering a file with repeated 16 bytes

blocks), lead to the same ciphertext, which is a major leak of secret
information that can be exploited by cryptanalytic attacks.

CBC mode is the default choice in current distributions of
OpenSSL. In this mode, the sequence of plaintext blocks is
enciphered using as input of each block the bitwise XOR between
a block of plaintext and the ciphertext obtained from the previous
block (or a known initialization vector for the first block).

CTR mode produces the ciphertext as the bitwise XOR between
each plaintext block and one of a series of cryptographic pads.
The cryptographic pads are obtained through the application of the
block cipher to counter initialized with a strong pseudo-randomly
generated value and sequentially incremented for each subsequent
block.

From a security point of view, CTR mode is considered even
safer than CBC [12], [13], thus it has been added in the 1.1 version
of the Transport Layer Security protocol standard [14].

3. Parallel Algorithm Design

In recent times, Graphics Processing Units (GPUs) have been
considered a potential source of computational power for non-
graphical applications, due to the ongoing evolution of their pro-
gramming interfaces and their appealing cost-performance figures
of merit. Recent works had first attempted to adapt “general
purpose” applications to the graphic rendering APIs (OpenGL and
DirectX), which up to two years ago represented the only interface
to tap into the GPU computational resources [15].

The use of GPUs to speed up the computation of AES has been
pioneered by D. Cook et al. in [16], and further developed by
Harrison and Waldron [17]. Both works faced major limitations
imposed by GPU hardware and software: on one hand, the GPU
instruction set architectures were mostly geared towards floating
point computation – thus lacking support for integer and logical
operations; on the other hand, GPUs exposed to the programmer a
set of operations only mapping typical rendering API, thus resulting
unwieldy to program in a general purpose context. However, these
limitations are quickly disappearing as GPU designers have been
dramatically increasing the level of support for general purpose
computing in their platforms [18], [19].

3.1. The NVIDIA G80 Architectures

Modern GPUs include hundreds of processing elements. The
NVIDIA G80 GPU series provide a set of independent multi-
threaded streaming multiprocessors. Figure 1 shows an overview
of the NVIDIA G80 streaming processors array which is the
part of the GPU architecture responsible for the general purpose
computation. Each streaming multiprocessor is composed by a set
of eight streaming processors, two special functional units and
a multithreaded instruction issue unit (respectively indicated as
SP, SFU and MT-Issue in Figure 1). A SP is a fully pipelined
single-issue processing core with two ALUs and a single floating
point unit (FPU). SFUs are dedicated to the computation of
transcendental functions and pixel/vertex manipulations. The MT-
Issue unit is in charge of mapping active threads on the available
SPs.

A multiprocessor is able to concurrently execute groups of
32 threads called warps. Since each thread in a warp has its
own control flow, their execution paths may diverge due to the
independent evaluation of conditional statements. In this case, the
warp serially executes each path. When the warp is executing a
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Figure 1. Sketch of the NVIDIA G80 streaming processors ar-
ray architecture: each Texture/Processor Cluster contains two
stream multiprocessors. In turn, each stream multiprocessor
is composed of eight streaming processor cores (SP), plus
two special function units (SFU). Shared memory is local to
each stream multiprocessor.

given path, all threads that have not taken that path are disabled.
On the other hand, in case the control flows converge again, the
warp may return to a single, parallel execution of all threads. Each
multiprocessor executes warps in a fashion much like the Single

Instruction Multiple Data (SIMD) paradigm, since every thread
will be assigned to a different SP and every active thread will
execute the same instruction on different data.

The MT-Issue unit weaves threads into a number of warps
and schedules an active warp for execution, using a round-robin
scheduling policy with aging for this purpose.

Streaming multiprocessors are in turn grouped in Texture Pro-
cessor Clusters (TPC). Each TPC includes two streaming multi-
processors in the G80 architecture. The TPC also includes support
for Texture processing, though these features are seldom used for
general purpose computing and will not be investigated in this
paper.

Finally, the NVIDIA GPU on-board memory hierarchy includes
registers (private to each SP), on-chip memory and off-chip mem-
ory. The on-chip memory is private to each multiprocessor, and is
split into a very small instruction cache, a read-only data cache, and
16 KB of addressable shared data, respectively indicated as I-cache,
C-cache and Shared Memory in Figure 1. This shared memory is
organized in 16 banks that can be concurrently accessed, each bank
having a single read/write port.

3.2. CUDA Programming Model

The Compute Unified Device Architecture (CUDA) [20], [18],
proposed by NVIDIA for its G80, G92 and GT200 graphics
processors, exposes a programming model that integrates host and
GPU code in the same C++ source files. The main programming
structure supporting parallelism is an explicitly parallel function
invocation (kernel) which is supposed to be executed by a user-
specified number of threads. Every kernel is explicitly invoked by
host code and executed by the device, while the host-side code
continues execution asynchronously after instantiating the kernel.
The programmer is provided with a specific synchronizing function
call to wait for the completion of the active asynchronous kernel
computation.

The CUDA programming model abstracts the actual parallelism
implemented by the hardware architecture, providing the concepts
of block and thread to express concurrency in algorithms. A block
captures the notion of a group of concurrent threads. Blocks are
required to execute independently, so that it has to be possible to
execute them in any order (in parallel or in sequence). Therefore,
the synchronization primitives semantically act only among threads
belonging to the same block. Intra-block communications among
threads use the logical shared memory associated with that block.

Since the architecture does not provide support for the message-
passing techniques, threads belonging to different blocks must com-
municate through global memory. The global memory is entirely
mapped to the off-chip memory. The concurrent accesses to logical
shared memory by threads executing within the same block are
supported through an explicit barrier synchronization primitive.
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Figure 2. AES Dataflow Graph: each empty node represents
an operation that manipulates a single word of the AES state
matrix, while a shaded node represents the copy of an output
value to the global memory. An operation row implements a
round of the algorithm. Synchronization between each round
and the next is required. These synchronizations are explicit in
fine-grained implementation where each thread is responsible
for the execution of a column of operations. In the coarse-
grained implementation, a single thread executes the whole
kernel, thus removing all explicit synchronizations.

A kernel call-site must specify the number of blocks as well as
the number of threads within each block when executing the kernel
code. The current CUDA programming model imposes a capping
of 512 threads per block.

The mapping of threads to processors and of blocks to multi-
processors is mainly handled by hardware controller components.
Two or more blocks may share the same multiprocessor through
mechanisms that allow fast context switching depending on the
computational resources used by threads and on the constraints
of the hardware architecture. The number of concurrent blocks
managed by a single multiprocessor is currently limited to 8.

In addition to the logical shared memory and the global memory,
in the CUDA programming model each thread may access a
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constant memory. An access to this read-only memory space is
faster than one to global memory, provided that there is sufficient
access locality since constant memory is implemented as a region
of global memory fit with an on-chip cache. Finally, another portion
of the off-chip memory may be allocated as a local memory that
is used as thread private resource. Since the local memory access
is slow, the shared memory also serves as an explicitly managed
cache – though it is up to the programmer to warrant that the
local data being saved in shared memory are not accessed by other
threads. Shared memory comes in limited amounts (threads within
each block typically share 16 KB of memory) hence, it is crucial
for performance that each thread handle only small chunks of data.

3.3. Design of a Parallel AES

The design of a parallel implementation of the AES algorithm
presented in Section 2 is chiefly dependent on the choice of the
grain of parallelism to expose.

We define fine-grained design a solution exposing the internal
parallelism of each AES round. The four 32-bit words of the
state computed by each AES round can be manipulated operating
independently one from each other. As shown in Figure 2, this
strategy explicitly points out a way to concurrent compute the state
of each AES round. The computation of each state word needs to
read the value of the former round state, thus forcing the insertion
of a barrier synchronization between consecutive rounds.

On the other hand, we define coarse-grained design a solution
that ignores the internal parallelism of the algorithm, and focuses
instead on the higher-level parallelism exposed by operation modes
such as the ECB and CTR. In these schemes, different blocks can
be encrypted or decrypted by different instances of the algorithm
running in parallel. Our implementation will tackle the CTR mode,
since it is more secure than ECB, as discussed in Section 2. This
design choice is also strongly dependent on the architecture of
the GPU – the level of hardware parallelism affects the tradeoff
point between coarse- and fine-grained designs, as will be shown
in Section 4.

A second design choice is the storage location of the four T-
boxes, T0, T1, T2 and T3. Since they contain exclusively read-only
data, they may be loaded into the constant memory. However, this
may not be the optimal choice, since the benefits of the constant
memory depend closely on the locality of the accesses. Since the
design criteria of the substitution boxes Ti is to be accessed in
a way that is dependent on the input values and therefore not
predictable, the accesses locality is practically non-existent.

An alternative choice is to load the T-boxes in shared memory.
Shared memory accesses are much faster than non-cached constant
memory accesses, since the memory is located within each stream
multiprocessor. On the other hand, shared memory typically experi-
ences a heavy load, being shared by 8 processing units and limited
in size to slightly less than 16 KB storage. In the AES case, though,
these issues are not crucial, since the algorithm works on a small
data set: four 32-bit words representing the state, plus the T-boxes,
which are shared by all threads within a block. In the fine-grained
implementation, four threads cooperate to compute a single AES
block. Since there is a need to access the values computed in the
previous round, two sets of four 32-bit words are used to keep
the previous state values while computing the new ones, and are
shared by the four threads. The coarse-grained implementation, on
the other hand, uses only a single set of four 32-bit words per
thread. Therefore, in the fine-grained implementation, each shared
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Figure 3. Use of banks of shared memory: banks are rep-
resented by columns of data blocks, while numbers mark the
memory access sequence of the thread of index 0. In the up-
per part of the figure, the shared memory is partitioned naively,
leading to 16 bank access collisions among 16 threads, while
in the lower part the shared memory is partitioned in order to
avoid any collisions.
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barrier synchronization

Figure 4. T-boxes loading on shared memory: the process is
fully distributed over 256 threads. Since the shared memory
is private to each stream multiprocessor, this operation is
performed in parallel on all of them.

memory is used to hold 8 · nthreads bytes of state, and 4 KB
of T-boxes, while in the coarse-grained implementation the shared
memory holds 32 · nthreads bytes of state, plus the same amount
of space for the T-boxes. Therefore, in fine-grained implementation
nthreads may scale up to 512 (the maximum value allowed by the
architecture, leading to the occupation of 8 KB of shared memory),
while in coarse-grained implementations, it is capped to 256 (with
a shared memory occupation of 12 KB).

The computation of each AES round needs to access the four
T-boxes in sequential order. To avoid bank access collisions, it is
important to allocate the memory used by each thread in a way that
as few threads as possible use the same banks at the same time.

Figure 3 provides a visual representation of the collisions occur-
ring during the access to shared memory banks. A naive allocation
of the memory causes the i-th thread to access the memory
addresses from 4i to 4i + 3. Since there are 16 memory banks,
threads i and i + 4 collide on every access. A better allocation
makes the i-th thread access memory at locations i, i + nthreads,
i + 2nthreads, i + 3nthreads, thus avoiding collisions.

Finally, the T-boxes will need to be loaded into the shared mem-
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ory of each stream multiprocessor, thus requiring an initialization
step. As shown in Figure 4, the loading process can be spread over
256 threads per stream multiprocessor, thus minimizing the time
spent in the initialization step.

4. Experimental Results

The experimental campaign reported in this section aims at
assessing the feasibility of employing GPUs as cryptographic
coprocessors, as well as identifying the most effective parameter
choice for the proposed parallel implementation of the AES block
cipher. In order to make a sound choice we provide comparisons
between the GPU and CPU based implementations of AES, as well
as a discussion of the different implementations (coarse-grained vs.
fine-grained, shared memory vs. constant memory), showing their
efficiency on different input plaintext sizes.

4.1. Experimental Settings

For our experiments, we have used two NVIDIA graphics
boards of the GeForce 8 family [7]: an 8400 GS with a single
Texture/Processor Cluster (and therefore 16 stream processors), and
an 8800 GT with seven Texture/Processor Clusters (112 stream
processors). Thus, our experimental campaign covers the current
range of low-cost graphics hardware, ranging from 30$ to 100$.
We implemented the four proposed approaches to AES CTR-mode
encryption within the OpenSSL framework.

As for the plaintext sizes, we report results in the range from
4 KB to 128 MB. This range was chosen for the purpose of
comparing our results with previous works. However, in practical
applications such as securing web services, the plaintext size
typically ranges from 35 KB to 150 KB [6], so particular attention
must be focused on the performance of encryption algorithms when
used on this input size range.

A further key application of cryptographical accelerators is
lowering the latency required to access a fully encrypted hard-disk
volume. Typical chunk sizes (a chunk being the disk-volume unit
of transfer) are in the same range mentioned above, so also the
encryption of large data on a disk or multi-disk storage (RAID)
may largely benefit from the use of a low cost graphic hardware
used as cryptographic accelerator.

The parameter space considered for the AES algorithm imple-
mentation in the experimental campaign is summed up as follows:

• Kind of parallelism: either fine-grained or coarse-grained.
• T-box memory allocation: either shared memory or constant

memory.
• Input plaintext size: ranging from 4 KB to 256 MB. The

input size implicitly defines the number of threads that will
be launched.

• Number of CUDA blocks and CUDA threads: threads are
packed in blocks of sizes ranging from 8 to 256 for the coarse-
grained design and up to 512 for the fine-grained one.

4.2. Performance Evaluation

We report two different types of results. First of all, we show
the throughput rate as a function of the input plaintext size,
considering the optimal configuration of the CUDA blocks and
threads arrangement. Afterwards, we show the impact of grouping
threads into blocks of variable size, while keeping the plaintext
size fixed.
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Figure 5. Throughput for the four AES implementations on
NVIDIA 8400 GS (16 SP).

Figures 5 and 6 show the results of the experimental campaign
on the 8400 GS and 8800 GT boards, respectively. In each figure,
the AES ciphertext throughput is charted as a function of the size
of the input plaintext. It can be seen that the implementations using
constant memory fail to provide good performance, confirming the
soundness of using shared memory to keep the T-boxes in. It is
also possible to see that the fine-grained approach outperforms the
coarse-grained one in the 35 KB to 150 KB plaintext size range
that was identified as crucial for practical applications. The break-
even point is reached at about 512- KB on the 8400 GS and 2 MB
on the 8800 GT, respectively; further pointing out the relevance
of the fine-grained approach in order to fully exploit the massive
number of stream processors even with a small sized input.
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Figure 6. Throughput for the four AES implementations on
NVIDIA 8800 GT (112 SP).

Before the break-even point the fine-grained approach proves
more effective mostly because it provides a wider computational
load thanks to the four times higher number of threads spawned
with respect to its the coarse-grained counterpart when considering
a fixed input size.

With the increase of the input size to architectural resources ratio
the coarse-grained approach has the upper hand on the fine-grained
as far as performances go. Such behavior has to be ascribed to the
fact that now both designs equally spawn enough threads to flood
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the architecture with computational load. Moreover, the coarse-
grained approach gets an higher IPC since in this case the spawned
threads do not need any form of synchronization.

Consequentially, when considering an hardware architecture
with more computational resources such as the 8800GT w.r.t. the
8400GS, the break-even point between the two design approaches
shifts toward higher input sizes since the input size to architectural
resources ratio is lower.

Finally, the asymptotic trend depicted by Figures 5 and 6
correctly exhibits the fact that an increasing number of threads
without scaling the hardware resources accordingly, forces the
massive marshalling of the spawned threads (explicit serialization).
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Figure 7. Impact of the number of threads per block on the
AES throughput; the cases of 32KB and 128KB plaintext size
are shown for the NVIDIA 8800 GT (112 SP).

Figure 7 depicts the impact of the number of CUDA-threads
assigned to each CUDA-block on the throughput rates. We report
for this experiment results from the larger 8800 GT board and
two plaintext sizes, 32 KB and 128 KB, that represent well the
expected working conditions of the ModSSL encryption module
of an Apache web server.

The programmability features exposed by the CUDA frame-
work offer the potential to obtain the best performance when the
hardware-resources are fully used at their best. To this purpose,
the number of CUDA-threads per CUDA-block and the number of
CUDA-blocks actually instantiated by an algorithm implementation
has to be exhaustively explored to find the best values suited for a
specific input size.

Threads from the same CUDA-block are mapped to the multi-
core architecture by the MT-issue unit, which splits them into
groups of at most 32 threads each (warp), and issues the instruc-
tions at warp level on a single streaming multi-processor. Warp
instructions coming from different warps of the same block may be
interleaved one with each other in order to hide latencies intrinsic
to some instructions.

Figure 7 shows clearly how CUDA-blocks containing less than
32 threads obtain a pitiful performance due to them under-filling
every warp, and thus not fully exploiting the parallelism offered
by the hardware. The use of a multiple of 32 threads per CUDA-
blocks (and thus allowing each block to be composed of several
warps) reveals a sensible growth in performance since full warps
are seamlessly interleaved hiding memory access latencies. When
moving from 32 threads per CUDA-block to 64, there is little cost
in terms of bank conflicts, thus the performance improvement is
high: the scheduling queue in the MT-issue unit is able to hold
up to 24 warps, but choosing them from 8 blocks only – thus the
number of schedulable warps doubles in this case. As the number
of threads per CUDA-block grows, the number of different blocks
that can be in the scheduling queue at the same time decreases
(since each block will be composed of more than 3 warps), thus
limiting the benefits obtained, since the ability of the scheduler to
mask synchronization delays by scheduling warps from different
blocks decreases.

Note that, in the case of the fine-grained implementation, we use
four times the number of CUDA-blocks than in the corresponding
coarse-grain implementation with the same number of threads per
CUDA-block – thus, for this implementation, the scheduler finds it
easier to balance the workload across the different multiprocessors,
leading to a performance benefit. This also explains why the
fine-grained implementation obtains worse performances when
using only 8 or 16 threads per CUDA-block: it produces a large
number of very small CUDA-blocks, which will not be ready in
the scheduling queue at the same time due to the architectural
constraint mentioned above. The coarse-grain implementation, on
the other hand, produces less CUDA-blocks, thus allowing a better
schedule.

In the case of the implementations using constant memory,
there is a single read access port, so the number of colliding
bank accesses roughly doubles at every doubling of the threads
number. Thus, the advantage obtained from the augmented number
of in-flight threads is dominated by the additional memory access
latencies. The throughput growth trend of the constant memory
solutions, remains within a smaller range of improvement (only a
twofold increase against a 32x increase in the thread number).

Finally, the performance trend exhibited by the shared memory
solutions benefit in a more significative way from the increasing
number of threads because the shared memory has 16 read/write
access ports and a significantly lower constant access latency.
The number of threads varies between 8 and 256 the throughput
improvement ranges from 8x with 32 KB of input plaintext to 16x
with 128 KB of input plaintext. In particular with 128 threads or
more the fine-grained approach yield better results.

In order to give a reference for the performance figures obtained
from the GPUs we provide in Table 1 some benchmark data
extracted from four common CPUs. We chose Intel’s Core 2
Quad Q6600 and Xeon Clovertown E5335 as two current high-
end processors and both AMD’s Athlon 64x2 3800+ and Intel’s
Pentium D 540 as two low-end but widely deployed ones. As far
as the operating system goes, we chose to run the benchmarks
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Table 1. Performance comparison: Throughput [Mbps]

Plaintext NVIDIA NVIDIA Intel AMD Intel Intel
Size 8800 GT 8400 GS Core 2 Quad Athlon 64x2 Xeon E5335 Pentium D 540

32 KB 2917 771 862 207 721 531
128 KB 6591 855 868 207 724 534
32 MB 12075 908 857 172 709 498
128 MB 12412 909 856 170 708 493
Processor

Specifications 112 SP 16 SP 64-bit mode 32-bit mode 64-bit mode 32-bit mode
Clock Freq. [MHz] 1500 900 2400 2000 2000 3200

Cost [$] ∼170 ∼30 ∼180 ∼45 ∼900 ∼40

on Linux, in full 64 bit mode for the two newer processor,since
it’s definitely likely that they will be running newly developed
software. The two older units were benchmarked using a 32 bit
version of Linux, since, representing old deployed systems, it is
more likely that the will not be running a 64 bit distribution. A
relevant remark to be made is that the OpenSSL toolkit provides
an assembly level optimized version of AES for the x86-64
architectures, thus yielding significantly better results, although it
is only available for full 64 bit distributions.

As it can be seen from the reported results the GPU based imple-
mentations are almost always faster than the CPU implementations,
with the lone exception of the 8400 GS underperforming w.r.t.
Intel’s Core 2 Quad when dealing with small plaintext sizes. This
may be ascribed to the threefold difference in clock rates between
the two processing units and the large 4 MB on-die cache of the
latter unit which allow the CPU to perform faster (albeit only by
a small margin) than the GPU.

The best throughput results are obtained with the higher-end
NVIDIA 8800 GT that, through scaling up the plaintext size, is
able to achieve a peak performance of 14 times the throughput of
the fastest CPU (12.4 Gb/s), and keeps yielding between 3 and 7
times improvements when employed in the 32 to 128 KB range
that it is considered the most relevant for applicative purposes.

When comparing the performance of the two NVIDIA GPUs, we
expect, from the difference in the number of parallel processors, a
7-fold improvement in favor of the 8800 GT. This improvement is
fully obtained only for large input plaintext sizes, which provide
enough computational load to fill the processing capabilities of
the more powerful GPU, which actually proves even faster than
expected, achieving a throughput improvement of more than 13
times with respect to the 8400 GS, thanks to a higher clock rate.

The results clearly point out an advantage in using GPUs to
compute cryptographic primitives, since, not only they are able to
fulfill the throughput needs far better than general purpose CPUs
do, but they also free up valuable cpu time which can be spent in
dealing with higher OS or application loads.

When evaluating performances with respect to hardware costs,
the two proposed boards are able to offer a better tradeoff in
terms of throughput per dollar than the classical solutions, and they
are easily integrable with existing machines, without issue when
running in both 32 and 64 bit mode. In particular the NVIDIA
8400 GS offers performances comparable to a Core 2 Quad at a
sixth of the price, while the 8800 GT offers 9 times the encryption
speed w.r.t. the Xeon E5335 at only a fifth of the price, bringing
the combined cost-performance advantage up to 45x. All the price
estimates for the CPUs are actually done by defect, since, while
adding a graphic card to a running server can be done without
upgrading other hardware, the addition of a second CPU is not
always possibile in such an effortless way, therefore the effective
cost-performance advantages are even stronger than the one we

assumed in our conservative hypothesis.

There are also hardware solutions, such as the VIA Pad-
Lock [21], to perform AES. The VIA chip is reported to provide a
top throughput of 1.9 GB/s, which remains below the throughputs
provided by graphics hardware such as 8800 GT.

5. Related Works

Manavski [22] pioneered the use of the CUDA framework to
implement AES – though it does not specify which mode of
operation is implemented. However, the implementation proposed
in [22] does not efficiently exploit the hardware parallelism offered
by the NVIDIA 8800 GTX used in its experimental evaluation:
when compared to our or other recent works using similar boards,
it only reaches half of the throughput rates reported in these works.
The reason of the reduced performances of the AES implementa-
tion [22] is in the use of constant memory for the T-boxes. As we
show in Section 4, the AES designs using constant memory never
reach the performance of shared memory-based designs.

Harrison and Waldron [17] first proposed a study of AES imple-
mentation on GPU hardware, using the GeForce 6 and 7 families.
These GPUs are not based on the G80 processor architecture,
but rather on traditional vector processors, not supporting integer
operations or a general purpose programming interface such as
CUDA. Indeed, the AES implementations proposed in this study
are based on the OpenGL library, which is not geared towards
general purpose computing. Even with these limitations, their
study successfully demonstrates the effectiveness of the GPU as
a coprocessor for bulk data encryption and decryption.

A more recent work by Harrison and Waldron [23] proposes
a CUDA-based implementation of AES, comparing it to previous
CPU-based and OpenGL-based implementations. Their approach
is comparable with the coarse-grained, shared memory design
discussed in Section 3. Section 4 reports experimental measures
consistent with those in [23] – the differences between the figures
we report for the coarse-grained shared memory design are due to
the different hardware platforms: the nearest comparison is between
the NVIDIA 8800 GT, which has 112 streaming processors, used
in our experiments and the 128 processors NVIDIA 8800 GTX
used in [23]. Moreover, the 384-bit memory interface of the
board used by [23], compared with our 256-bit memory interface
is also a significant hardware-specific advantage. With respect
to [23], we offer the exploration of different design solutions,
including the exploitation of fine-grained parallelism, which proves
more effective under a wide range of plaintext input sizes, in
particular those expected to fit within the most typical range for
web applications.
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6. Conclusions

In this paper, we investigate the possibility of using modern
graphics hardware, supported by toolchains oriented to general
purpose programming, as a coprocessor to ease the CPU load when
encrypting/decrypting data streams in web server applications. We
have shown how to effectively implement the AES block cipher
using the CUDA toolchain and programming model, extracting as
much parallelism as possible from the algorithm with both coarse
and fine grained approaches. We provided an extensive quantitative
evaluation on a range of NVIDIA GPUs based on the G80 architec-
ture and scaling from 16 to 112 cores. These experiments allow us
to confirm that, for the AES block cipher and similar algorithms, it
is possible to efficiently use the GPU as a coprocessor. Moreover,
this solution is cost effective when compared to the assembly-
level optimized CPU-based implementations of the AES built in
the OpenSSL library.

With respect to previous works in the field, we provided an
experimental evaluation of a much larger design space, showing
two locally optimal solutions with respect to the input plaintext
size parameter. These solutions, based on fine- and coarse-grained
parallel designs, may be integrated to provide better performance
over the entire range of the input parameter.

Overall, we report throughput improvements of up to 14 times
over the CPU implementations chosen as baseline, as well as
performance/cost figure of about 73 Mbps per dollar for the
NVIDIA 8800 GT against the 4 Mbps per dollar of the Intel Core
2 Duo.

Future research efforts may address the automated exploration
of the design space by the compilation toolchain, a task that is
bound to require a major effort from the designer with the current
tools, as well as the deployment of automatically-tuned solutions
specific to input size. On a different direction, the use of the
GPU as a complete, low-cost cryptographic coprocessor could be
further explored through the parallel-oriented re-engineering of
other cryptographic primitives integrated in widespread tools such
as OpenSSL.
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