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Abstract—This work presents a differential fault at-
tack against AES employing any key size, regardless
of the key scheduling strategy. The presented attack
relies on the injection of a single bit flip, and is able
to check for the correctness of the injection of the
fault a posteriori. This fault model nicely fits the one
obtained through underfeeding a computing device
employing a low cost tunable power supply unit. This
fault injection technique, which has been successfully
applied to hardware implementations of AES, receives
a further validation in this paper where the target
computing device is a system-on-chip based on the
widely adopted ARM926EJ-S CPU core. The attack is
successfully carried out against two different devices,
etched in two different technologies (a generic 130nm
and a low-power oriented 90nm library), running a
software implementation of AES-192 and AES-256 and
has been reproduced on multiple instances of the same
chip.

Index Terms—Fault injection attacks, Side channel
attacks.

I. Introduction

In the recent years, the increasing adoption of embedded
and portable systems, has bred a wide interest in both
academical and industrial communities towards security-
enhancing features of digital devices. The security of cryp-
tographic algorithms is based both on the strength of the
underlying mathematical problem and on a properly engi-
neered implementation. Fault attacks alter the execution
of a cryptographic algorithm in order to collect faulty
ciphertexts which leak information related to the secret
key. This work provides new insights on the security of
the AES implementation, with any key scheduling strategy,
and in particular on the versions employing keys larger
than 128 bits. The attack proposed in this paper relies
on a transient single-bit flip, practically induced through
a constant underfeeding of the computing circuit, which
has been proven feasible employing only a very cheap
and simple apparatus [1]–[3]. Depending on the device, it
is quite easy to recognize a supply voltage region where
this kind of faults appear in rising quantity throughout
the whole computation [2], [4]. These faults are induced
with no synchronization with respect to the execution,
thus not all of them will provide a useful ciphertext in
order to lead the attack. All the non exploitable faults
are discarded properly by our algorithm, which provides a
way to recognize which ones are respecting the hypotheses
needed to infer parts of the secret key, regardless of the

timing and position of the errors. This leads to a greater
ease in the attack setup, since no ad-hoc timing devices
for an execution synchronous underfeeding of the circuit
are required. Performance figures show that it is possible
to successfully break the AES for every key length within
minutes of work encompassing both the fault collection
phase and the computational post processing of the re-
sults. The remainder of the paper is organized as follows:
Section II summaries the related work on the single-bit
fault model, Section III briefly revises the AES design,
Section IV introduces the proposed attack, and Section V
reports methodology for injecting faults and describes
experimental results. Finally, Section VI summarizes our
conclusions and points towards future research directions.

II. Related Work

Recently, the attention of researchers towards fault
attacks against AES with any key size has incremented.
Three recent papers [4]–[6] presented attacks similar to the
one presented in this work. In [4], the authors introduce
a single-byte attack which, keeping the plaintext fixed,
retrieves an intermediate state in the penultimate round
and uses it to find the penultimate round key. Takahashi
et al. [6] are able to obtain 192-bit keys using 3 pairs of
correct and faulty ciphertexts, and the 256-bit key using 2
pairs of correct and faulty ciphertexts and 2 pairs of correct
and faulty plaintexts, with a single byte fault model. The
attack is cheap in terms of number of faults but it requires
to target specifically one byte in rounds 8, 9 for the AES-
192 and round 11 for the AES-256. This in turn implies
that the attacker must have a precise control on the timing
of the attack. Moreover, a distinguishing criteria for the
useful faults is not provided and, it has not been practically
validated by the authors on a real platform. Moreover,
for the AES-256 case, it is required to inject faults during
decryption, which is not always possible, since the attacker
may not be granted access to a device able to decrypt the
ciphertext. Li et al. [5] assume the same two fault models
of [7]. The first one covers differences of up to 3 bytes while
the second requires an entire 32-bit column of the state
being different from the correct one. Albeit the assumed
fault models are encompassing very wide faults, the attack
requires a considerable number of faulty ciphertexts to be
collected: 6 for the first fault model and around 1500 in
the second, in order to retrieve a single column of the key.
Thus, around 7×4 and 1500×4 faults are needed to carry



out the attack employing the first and second fault model
respectively. A further downside of these technique are the
steep requirements, both in terms of memory footprint and
computing power, on the computing platform needed to
analyze the results. In fact, when employing the second
fault model, the number of candidates is reduced very
slowly, thus requiring the memorization of huge sets during
the pruning phase. The attack also needs to keep the
plaintext fixed during the whole attack and the authors do
not provide a practical validation of the technique against
a real world device.

III. Preliminaries on AES

The AES cipher is a subset of Rijndael [8], it processes
128-bit wide plaintext blocks using a key, whose size may
be selected among 128-bit, 192-bit or 256-bit. Longer
key sizes correspond to higher security, obtained at the
cost of a longer processing time. The AES is an iterated
block cipher, where the round is the transformation that
elaborates 128 bits key of cipher state and 128 bit of round
key. The number of rounds is determined by the key size,
and is equal to 10, 12 and 14 rounds for 128-bit, 192-bit
and 256-bit keys, respectively. For the sake of clarity in the
description, the cipher state can be seen as a 4×4 matrix,
where each element of the matrix is a byte. The round is
composed by 4 basic transformations: SubBytes (a non
linear function, usually in the form of a lookup table,
applied byte-wise), ShiftRows (the rows of the matrix are
shifted by a constant amount), MixColumns (the cipher
state is multiplied column-wise by a constant matrix, this
correspond to a mixing of bytes within a column), and
AddRoundKey (xor addition of the words of the expanded
key). All the rounds are equal, except for the last one,
which is missing the MixColumns, and the first one which
has an additional key addition before its start. The secret
key is expanded through the KeySchedule algorithm:
depending on the key size, the number of rounds r to be
applied is defined, and consequently the length of the ex-
panded key, the cipher key k is transformed in 4(r+1) 32-
bit words, where r ∈ {10, 12, 14} while key length s is equal
to 4, 6 or 8 words. Usually the expanded key is represented
as an array of 32-bit words, W [0, . . . , 4(r+1)−1]. The first
s words of W are filled with the secret key itself, while
the others are obtained through linear combination of the
first four words, interleaving, every s words, a non linear
step [8]. In order to speed up the execution of the algorithm
on small computing platforms, it is possible to merge
together the operations of SubBytes and MixColumns

through precomputing larger lookup tables (known as T-
Tables) which act as the functional composition of the
two operations.

IV. Single-Bit Fault Attack to AES

Underfeeding the power supply enables a graceful degra-
dation of the functioning of the device, making it realistic
to induce single-bit error in the computation. In particular,
the cryptographic device is underfed in such a way that

each encryption is characterized by a lone single-bit fault.
The new attack exploits the single-bit errors located in the
penultimate round and describes a method to distinguish
the faults that are potentially useful to reduce the candi-
date key space, allowing the application of the attack even
when the attacker has no control over the fault injection
timing. The new technique is able to recover any round
subkey from the AES cipher, regardless of both the key
scheduling algorithm or the number of rounds, thus en-
compassing future modifications. Our proposal is the first
attack to AES-192 and AES-256 reporting a practical result
in an experimental campaign with a cheap workbench, able
to inject a single bit flip fault. For the sake of clarity, the
proposed attack will be presented while referring to the
plain AES implementation previously summarized.
The purpose of the new attack is to retrieve the penulti-

mate round subkey k(r−1) in the case of AES-256 and the
second half of it in the case of AES-192. The inverse key
scheduling process can then be applied to find the cipher
key k, using the method described in [9].
A differential fault attack working against Substitution-

Permutation Networks, is introduced in [10] under the
hypothesis of a single-byte change between the last and
the last-but-one diffusion layers (MixColumns in the case
of AES). The application to AES enables the attacker to
recover the last round subkey k(r), working independently
on different words. The attack in [10] provides also a
distinguishing criteria to identify exploitable faults, relying
on the fact that only one 32-bit column of the erroneous ci-
phertext c̃(r) is different from the correct one of c(r). How-
ever, the proposed algorithm is not extended to recover
subkeys other than the last. In the following we describe
an algorithm able to pierce successfully a regular round of
the AES cipher (i.e. one including the MixColumns), thus
obtaining a method able to roll back the whole cipher and
retrieve all the round subkeys regardless of their mutual
relations or the number of rounds.

A. Retrieval of the Last Round Subkey, k(r)

The first step of the attack is to retrieve the last round
subkey in a word oriented fashion, using the method
described in [10]. The attack in [10] can easily fit a single
bit fault model, since it is an actual restriction of the
required fault hypothesis (single byte fault). Thus, it is
possible to use it in order to find the last key k(r), as
detailed in Function IV.1 (GetLastSubKeyWord). Let
us denote a faulty ciphertext as c̃=〈c̃0, c̃1, c̃2, c̃3〉, and a
fault-free one as c=〈c0, c1, c2, c3〉, where c̃u, cu, 0≤u≤3,
are the columns of the matrices. The evaluation of
possible differences between c̃u and cu (caused by a
single byte fault between the last and the last-but-one
MixColumns step) adds up to 255×4×4 different values.
Such values can be listed through enumerating all the
state tables resulting from changing a single fixed-
position byte value, and then repeating the change for
each one of the 16 bytes composing the state table, i.e.:



Function IV.1: GetLastRoundKeyWord( j )

Input : j ∈ {0, 1, 2, 3}, word index of the last subkey

Output: k
(r)
j , j-th word of the last subkey k(r)

Data : ∆={〈δ0, 0, 0, 0〉, 〈0, δ1, 0, 0〉, 〈0, 0, δ2, 0〉, 〈0, 0, 0, δ3〉} ,
δu ∈ {x, x 28, x 216, x 224 | 0≤x<28}, 0≤u≤3,
|∆| = 255× 4× 4;

∆
′
={ d | d � MixColumns(δ), ∀δ ∈ ∆ };

ζ denotes a matrix storing a differential value of
the AES state matrix; 〈ζ0, ζ1, ζ2, ζ3〉 specifies the
state matrix as the tiling of four 32-bit words

Generate a random plaintext p1

/* Record a faulty and fault-free ciphertext */

c(r) � AES Encryptk(p) /* k: unknown cipher key */2

c̃(r) � Faulted AES Encryptk(p)3

Carve words w̃, w both according to j and taking into account4

the last ShiftRows operation
L � ∅ /* Set up of Candidate-Words List */5

foreach k̄ ∈ {0, . . . , 232 − 1} do6

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉7

ζj � InvSubBytes(w ⊕ k̄)⊕ InvSubBytes(w̃ ⊕ k̄)8

if 〈ζ0, ζ1, ζ2, ζ3〉 ∈ ∆
′
then L � L ∪ { k̄ }9

/* Word Selection Phase */
while |L| > 1 do10

Generate a random plaintext p11

/* Record a faulty & fault-free ciphertext */

c(r) � AES Encryptk(p) /* k: unknown cipher key */12

c̃(r) � Faulted AES Encryptk(p)13

Carve words w̃, w both according to j and taking into14

account the last ShiftRows operation
foreach k̄ ∈ L do15

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉16

ζj � InvSubBytes(w ⊕ k̄)⊕ InvSubBytes(w̃ ⊕ k̄)17

if 〈ζ0, ζ1, ζ2, ζ3〉 /∈ ∆
′
then L � L \ { k̄ }18

return k
(r)
j /* L = {k̄}, k̄ = k

(r)
j */19

∆={〈δ0, 0, 0, 0〉, 〈0, δ1, 0, 0〉, 〈0, 0, δ2, 0〉, 〈0, 0, 0, δ3〉} ,
δu ∈ {x, x 28, x 216, x 224 | 0 ≤ x < 28}, 0 ≤ u ≤ 3.
The inter-byte diffusion operated by the last
MixColumns maps bijectively each difference value
into another thus obtaining another set of differential
state tables with the same cardinality of ∆:
∆

′
= { d | d � MixColumns(δ), ∀ δ ∈ ∆ }. The

first step of the algorithm is to generate a random
plaintext p (line 1) and to encrypt it both in a correct
and in a fault inducing condition, outputting c and c̃
respectively (lines 2–3). The next step extracts the word
w from c and the word w̃ from c̃ according to the positions
in which c is different from c̃. In lines 6–9 each of the
candidate values for the target word of the last subkey is
checked for compatibility with the fault model. Keeping
k̄ as the current key candidate, lines 7–8 build the matrix
ζ, which represents the differential value before the last
SubBytes step. If the difference ζ is compatible with
the set ∆′, meaning that it may have been originated
by a single byte difference before MixColumns in the
(r−1)-th round, then the current candidate is inserted in
L, otherwise it is discarded. Lines 10–18 simply repeat
this process considering a new couple of correct and faulty
ciphertext and using as key candidates only the elements
already in set L. If an element that was previously
accepted does not satisfy condition in line 18 then it is

Function IV.2: GetPotentialFault(j, k(r) )

Input : k(r), last round subkey,
j ∈ {0, 1, 2, 3}, word index of the state in the

penultimate round

Output: ( c
(r−1)
j , c̃

(r−1)
j ),

c
(r−1)
j =〈c(r−1)

j,0 , c
(r−1)
j,1 , c

(r−1)
j,2 , c

(r−1)
j,3 〉,

c̃
(r−1)
j =〈c̃(r−1)

j,0 , c̃
(r−1)
j,1 , c̃

(r−1)
j,2 , c̃

(r−1)
j,3 〉

Data : Γ={〈γ0, 0, 0, 0〉, 〈0, γ1, 0, 0〉, 〈0, 0, γ2, 0〉, 〈0, 0, 0, γ3〉} ,
γu ∈ {SubBytes(α)⊕SubBytes(α̃),

α⊕α̃∈{2i, 0≤i≤7} }, 0≤u≤3, |Γ| = 163× 4
Generate a random plaintext p1

c(r) � AES Encryptk(p) /* k: unknown cipher key */2

c(r−1) � InvSubBytes(InvShiftRows(c(r) ⊕ k(r)))3

repeat4

c̃(r) � Faulted AES Encryptk(p)5

c̃(r−1) � InvSubBytes(InvShiftRows(c̃(r) ⊕ k(r)))6

until ( ∃ ! j′∈{0, 1, 2, 3} | j′=j∧ c
(r−1)
j 6=c̃

(r−1)
j ) ∧7

( InvMixColumns(c
(r−1)
j ⊕c̃

(r−1)
j )∈Γ )8

return 〈 c(r−1)
j , c̃

(r−1)
j 〉9

removed from L (line 18). At the end, L will contain a

single value for k
(r)
j .

B. Exploitable Fault Selection

Our extension, from now on, works under a known
ciphertext assumption with no particular requirements
on the enciphered plaintexts, other than having pairs
of faulty and fault free ciphertexts obtained from the
same plaintext. In order to perform the retrieval of the
key k(r−1) we assume that an erroneous ciphertext is
the result of a single bit fault occurred just before the
SubBytes operation in the (r−1)-th round. This fault
will result in a single byte corruption of the state just
before the MixColumns in the (r−1)-th round. Due to
the position and shape of these faults, they may also be
employed to retrieve the last round subkey as described
in Function IV.1, enabling the attacker to further reduce
the number of faults he needs to inject. As a first step,
we describe the function able to detect the useful faults
and discard the un-exploitable ones. Function IV.2 takes
as input a copy of the last round subkey k(r), and returns
a pair of faulty-free (c

(r−1)
j ) and faulty (c̃

(r−1)
j ) columns

of the penultimate round output, together with their
position (j∈{0, 1, 2, 3}) in the state matrix. In order to
distinguish exploitable faults from non exploitable ones,
the effect of the S-box on a difference between two inputs
must be investigated. Through exhaustive computation,
we determined that, given a single bit difference between
two byte values α and α̃=α⊕2i, 0≤i≤7, the possible
differences SubBytes(α)⊕SubBytes(α̃) are only 163.
The size of the set Γ of all the possible word-wise
differences, which may happen after the ShiftRows

operation, adds up to 163×4, since the single bit fault
may happen in any of the four bytes involving a word
of the state matrix. Once this set has been precomputed
and stored in memory, the function GetPotentialFault

considers a fixed plaintext (line 1), removes from the



corresponding correct ciphertext c(r) the effect of the
last round, producing the correct c(r−1) output of the
penultimate round (lines 2–3). An analogous procedure
is employed to produce the faulty output c̃(r−1) of the
penultimate round (lines 5–6), the only difference is that
now a fault is injected during the computation (line 5).
After computing c(r−1) and c̃(r−1), the algorithm, acting
word-wise, computes the difference between the correct
and faulty state and inverts the MixColumns operation
on it, checking if only one resulting word belongs to Γ
and the other ones are identically zero. If this is the
case, it returns the pair of correct and faulty words,
together with their position j ∈ {0, 1, 2, 3}, otherwise the
algorithm goes back to consider a new faulty ciphertext
and performs the analysis again. We want to stress that
the GetPotentialFault only represents a good heuristic
in order to determine if a faulty ciphertext has been
generated by a single bit fault, since multi-bit faults
occurring in a byte, α, may generate a value α̃ such
that γu=(SubBytes(α)⊕SubBytes(α̃)), u∈{0, 1, 2, 3}
( Γ={〈γ0, 0, 0, 0〉, 〈0, γ1, 0, 0〉, 〈0, 0, γ2, 0〉, 〈0, 0, 0, γ3〉} ).
Viceversa, the key observation which enables us to reduce
the keyspace is that no other values but the ones in Γ
may be generated, at the output of the S-box, by a single
bit difference. Since the faults are equally distributed
over the cipher states, the probability that a fault hits a
word of the state under attack is 1

r , thus resulting in an
average requirement of r

2 trials to obtain an exploitable
fault. Assuming that the attacker is able to inject a single
bit fault with probability ps, the average number of faults
which must be injected raises to r

2ps
. As reported in [2],

it is possible to tune correctly the workbench, so that ps
is very close to 1. Taking into account the possible double
injection of the same fault, and denoting the probability of
injecting a different fault as pd (the actual pd depends on
the hardware fault model), the average number of faults
to be collected to obtain distinct, exploitable faults raises
to r

2pspd
. In case the attacker is not able to selectively

inject only single bit faults, the checking against the Γ set
provides a method to raise the probability of returning an
exploitable fault from 8

255 (accepting any single byte fault
as possible single bit) to 8

163 , a twofold improvement.

C. Single bit Attack

Algorithm IV.3 describes the new attack technique to
retrieve the last-but-one round subkey k(r−1) employing
Function IV.2 and the last round subkey k(r) obtained
through Function IV.1 (lines 1–3). This algorithm takes
into account the fact that the heuristic in GetPotential-

Fault may yield non exploitable faults, thus it is repeated
until all the four key words of k(r−1) are successfully
recovered. In order to keep track of which ones have
already been extracted, a set of indexes J = {0, 1, 2, 3}
is initialized at line 4. The body of the while loop (lines
5–25) acts in two distinct phases: at first it builds four
different lists Lj , one for each candidate word of the

Algorithm IV.3: AES Single-Bit Attack

Output: k(r−1), penultimate round subkey
begin1

/* k(r)=〈k(r)0 , k
(r)
1 , k

(r)
2 , k

(r)
3 〉 */

foreach i ∈ {0, 1, 2, 3} do2

k
(r)
i � GetLastRoundKeyWord(i)3

/* k(r−1)=〈k(r−1)
0 , k

(r−1)
1 , k

(r−1)
2 , k

(r−1)
3 〉 */

J � {0, 1, 2, 3}4

while J 6= ∅ do5

/* List Filling Phase */
foreach j∈J do6

(w, w̃) � GetPotentialFault(j, k(r))7

/* w � c
(r−1)
j ; w̃ � c̃

(r−1)
j ; */

Lj � ∅8

foreach v ∈ {0, . . . , 232 − 1} do9

ω�InvSubBytes(InvMixColumns(w⊕v))10

ω̃�InvSubBytes(InvMixColumns(w̃⊕v))11

if (ω⊕ω̃) ∈ {2i, 0 ≤ i < 32} then12

Lj � Lj ∪ { v }13

/* List Pruning Phase */
foreach j∈J do14

while |Lj | > 1 do15

(w, w̃) � GetPotentialFault(j, k(r))16

foreach v ∈ Lj do17

ω�InvSubBytes(InvMixColumns(w⊕v))18

ω̃�InvSubBytes(InvMixColumns(w̃⊕v))19

if (ω⊕ω̃) ∈ {2i, 0 ≤ i < 32} then20

Lj � Lj \ { v }21

if |Lj |=1 then22

k
(r−1)
j � v̄ /* L = {v̄} */23

J � J \ { j }24

/* Whether J 6= ∅ (∃ j ∈ {0, 1, 2, 3} | |Lj |=0 ),
go back to line 5 */

end25

return k(r−1)26

subkey to be found (lines 5–13), then it prunes them
until a single candidate for each list is left (or until a
brute force search over the reduced keyspace is feasible)
(lines 14–24). The first phase, repeated once for every
subkey word to be found, starts obtaining the j-th word
of an exploitable correct-faulty ciphertext pair through
the GetPotentialFault function: w � c

(r−1)
j ; w̃ � c̃

(r−1)
j

(line 7). In order to fill the list of candidates for the
corresponding word of the subkey, the two state values are
added to the key, passed through an InvMixColumns and
an InvSubBytes function, obtaining ω and ω̃ respectively
(lines 10–11). If the difference (computed through xor)
between ω and ω̃ is non zero in a single bit, the key
candidate is deemed compatible with the current state
pair and added to the list (lines 12–13). Note that, the
algorithm does not consider the effect of the InvShiftRows

operation, which is present between the InvSubBytes and
InvMixColumns steps. This is not an issue since the
InvShiftRows will move a byte from each word into each
other. This results into having a single faulty byte per word
which allows the attacker to infer the correct position of
the fault. It is then possible to deduce the correct word
which has been affected with the fault from the position of
the faulty byte in the shifted state and the column affected



by the fault. Now, all the four lists Lj , j∈{0, 1, 2, 3}, have
been filled with candidate keys. In the event a brute force
search over all the possible cipher subkeys k(r−1), which
can be built through the combination of all the words in
the four lists, is not directly possible or not desired, the
algorithm starts a list pruning phase. The pruning phase
follows the same procedure of the filling phase for each
list Lj (line 14), the only difference is that instead of
adding a new key candidate word v to Lj , it checks if
a key candidate word in v ∈ Lj passes the check against
a new correct-faulty state pair, and removes it in case the
check is missed (lines 15–21). At the end of the pruning
phase the list Lj will either contain a single candidate
or be empty. In case a single candidate is present (line

22), this value is assigned to the subkey word k
(r−1)
j and

the index j is extracted from the set J (lines 22–24). The
case of a list being empty is generated by a non single-
bit fault misleading the GetPotentialFault function,
and generating an unsolvable set of constraints for the
candidate keys. In this case, the algorithm simply resumes,
from the filling phase, the search for the candidate key
word (i.e., it goes back to line 5). It is not possible for
the multiple-bit faults to lead the algorithm to compute
a wrong key candidate word, since the checks to fill in
(lines 12–13) and spill from (lines 20–21) the candidate
lists are done against the single-bit fault hypothesis, thus
leading to a contradictory set of constraints in case of
a multi-bit fault. After the execution of the algorithm,
we have retrieved the whole round subkey k(r−1) without
considering any relation with the KeySchedule algorithm,
thus we can roll back one more round. If the algorithm
under attack is either AES-192 or AES-256, it is already
possible to compute the whole key schedule since we are
in possess of enough key material to invert it and derive
the cipher key k.

V. Experimental Results

A. Experimental Settings

In this section the setup of the attack environment, used
to demonstrate the feasibility of the attack in a realistic
environment, is described. This provides insights on a low
cost fault injection technique, not invasive, not destructive
and easily reproducible. This represents a practical attack
against a software execution of the AES algorithm, but
this technique is not limited to software implementations.
A practical proof of feasibility on a secure hardware imple-
mentations of AES on a tamper proof device (smart card)
is given in [1]. The overall architecture is the same as that
used in [2].

Device Under Attack The devices attacked are system-
on-chips based on the general purpose 32-bit CPU

ARM926EJ-S1. This CPU is based on a RISC Harvard
architecture CPU, with 16 general purpose registers and a

1ARM926EJ-S Technical Reference Manual:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0198e/
DDI0198E arm926ejs r0p5 trm.pdf

5-stages pipeline. We had the possibility to test the attack
on two different devices, both equipped with the same CPU
though implemented in different silicon technologies. One
of these devices is optimized for mobile applications adopt-
ing a low power technology, while the other is a general
purpose device used for different applicative targets like
computer peripherals or telecommunication systems, and
is implemented using a general purpose silicon technology.
Both devices are endowed with a split data/instruction
level 1 cache, 16KB wide, while the first one also has
a common level 2 cache, 256KB wide. Both devices are
equipped with different peripherals: USB, Ethernet, and
connections for different types of RAM and Flash mem-
ories. In both cases common commercial development
boards were used, without having the need to design a
custom one. Both systems are endowed with an U-Boot2

embedded bootloader, able to load the binary to be run
via TFTP3 protocol. During all the attack campaigns, the
target application was run on top of a Linux 2.6.15 kernel
(DENX distribution) employing an NFS4 partition as root
file-system. To compile our application, we used a cross-
compile toolchain based on GCC 3.4 for ARM9 provided
by Codesourcery5.

Fault Injection Methodology Transient faults are
injected through the constant underfeeding of the system-
on-chip as described in [2]. The manipulation of the power
supply causes faults due to the raise of the setup time
needed for the logic gates to switch into the correct state:
this phenomenon affects in particular high capacitance
paths, which are the slowest lines of the circuit. It is inter-
esting to note how the position of the failing line is rather
stable and bound to the device sample. To manipulate
the power supply, we have detached the on-board power
supply and replaced it with an external one. We have used
an Agilent precision power supply unit, namely the Agilent
3631A6. Note that this is the most expensive part of the
setup equipment needed to perform the attack. From a
quick browse on the web, we have seen that is possible to
buy a pre-owned one for about 1000 USD. Cheaper, and
thus less precise, power supply units are suitable as well,
provided that an output resolution improvement circuit
(which can be built for less than 5 USD) is employed as
described in [4]. Before running the attack, we made a brief
characterization of the fault model, which confirmed the
results presented in [2]. The fault is single-bit flip down,
with the position of the flipped bit is rather stable for the
each device sample. Only the load operations from the
main memory are affected by faults. A faulty load from
memory can affect either a value of the algorithm or an

2Das U-boot Bootloader, http://www.denx.de/wiki/U-Boot
3RFC 1350, http://tools.ietf.org/html/rfc1350
4RFC 1813, http://tools.ietf.org/html/rfc1813
5GNU Toolchain for ARM Processors,

http://www.codesourcery.com/sgpp/lite/arm
6E3631A 80W Triple Output Power Supply Datasheet,

http://www.home.agilent.com/upload/cmc upload/All/
663xseries datasheet Jan06.pdf



instruction. In practice, instructions are rarely affected,
since in our case the instruction cache achieves a very low
miss rate due to the very low number of branches in the
algorithm [4]. This results in a very regular behavior of the
chip which, provided the voltage tuning is properly done,
does not crash while all the needed faults are collected.
Therefore, we exploit only the faults that affect data loads
from the main memory.

B. Performance Evaluation

We now present the experimental results of the new
attack considering three AES software implementations [8],
which differ for the various time to memory tradeoff
strategy employed. In particular, the fastest of the three
requires four lookup tables (called T-tables) while the
slowest one only one S-box table. The third implementa-
tion employs only one T-table and obtains the values of
the words from the other three tables through a rotation
operation. Since the CPU caches can influence the injection
of faults, the time-memory tradeoffs exposed by these
three implementations allow to precisely ascertain the im-
pact of the ARM9 data caching policies on the effectiveness
of the attack. All the CPU caches (both L1 and L2 when
available) were enabled during the experiments and the
clock frequency set to the maximum one supported, in
order to evaluate the attack in unsimplified working condi-
tions. Using the under-voltage fault injection technique, we
collected 100KB of faulty ciphertexts for each of the three
implementations (for AES-128, -192, -256, respectively)
from 2000 different plaintexts and processed them offline
on an Intel Core i7–920 (over-)clocked at 4.0GHz and
running Ubuntu Linux 9.04. The attack was implemented
in C++ using POSIX standard threads in order to split the
load on the eight logical cores of the machine. The results

Table I
Attack Performances

while processing 100KB of faulty ciphertexts

Algorithm IV.3

Key Size [bit] 192 256

Required Faults 10 20

Execution Time 2′30′′ 3′

Collection Time 20′′ 30′′

of the experimental campaign are shown in Table I. The
results refer only to the single T-table implementation,
since the device in our possess experiences only a single flip
down in the 28-th bit of a word, and the single T-table
implementation is the only one that distributes the faults
among different bytes of the word. As it can be seen from
the second row of Table I, the attack requires 10 single-bit
faults for the AES-192 to retrieve the second half of the
penultimate round key (five for each column of the key),
and 20 faults for the AES-256. The execution time row tells
that, starting from the raw data produced by the device,
only 2′30′′ are required to retrieve the cipher key of AES-
192 and 3 minutes for AES-256. The last row of Table I

reports that, on average, 20′′ and 30′′ seconds of constant
underfeeding of the device suffice to produce the number
of faults required to carry out the attack. In other words,
the attacker needs the physical control of our device for at
most 30 seconds in order to find the cipher key.

VI. Conclusion

In this paper we propose a new differential fault attack
against AES implementations of any key size, without
being bound to any key scheduling strategy. This enables
us to successfully extend the attack to any possible revision
of the AES standard involving those parameters, or to
attack AES implementations employing proprietary key
schedules. The attack relies on the injection of single bit
faults: this has been proven viable through a low cost fault
injection methodology, based on underfeeding the comput-
ing device. We have practically validated the feasibility
of the attack carrying a successful one against multiple
instances of two chips, etched with a different technological
process and based on the widely deployed ARM926EJ-S.
Two possible types of countermeasures against this fault
injection technique can be adopted: either employing forms
of redundant computation (replicate the execution of the
algorithm or insert of error correcting codes) or preventing
the underfeeding through proper voltage probes inserted
in the computing circuit. These methodologies imply addi-
tional costs either in computation time or in design effort
of the device and thus need to be properly investigated to
choose an optimal solution for the target application.

References
[1] N. Selmane, S. Guilley, and J.-L. Danger, “Practical Setup

Time Violation Attacks on AES,” in EDCC-7’08: Proceedings of
the 2008 Seventh European Dependable Computing Conference.
Washington, DC, USA: IEEE CS, 2008, pp. 91–96.

[2] A. Barenghi, G. M. Bertoni, E. Parrinello, and G. Pelosi, “Low
Voltage Fault Attacks on the RSA Cryptosystem,” in Workshop
on Fault Diagnosis and Tolerance in Cryptography, vol. 0. Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 23–31.

[3] F. Khelil, M. Hamdi, S. Guilley, J.-L. Danger, and N. Selmane,
“Fault Analysis Attack on an FPGA AES Implementation,” in
NTMS, A. Aggarwal et al., Eds. IEEE, 2008, pp. 1–5.

[4] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and
G. Pelosi, “Low Voltage Fault Attacks to AES and RSA on
General Purpose Processors,” Cryptology ePrint Archive, Re-
port 2010/130, 2010, http://eprint.iacr.org/.

[5] W. Li, D. Gu, Y. Wang, J. Li, and Z. Liu, “An Extension of
Differential Fault Analysis on AES,” International Conference
on Network and System Security, vol. 0, pp. 443–446, 2009.

[6] J. Takahashi and T. Fukunaga, “Differential Fault Analysis on
AES with 192 and 256-Bit Keys,” Cryptology ePrint Archive,
Report 2010/023, 2010, http://eprint.iacr.org/.

[7] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A
Generalized Method of Differential Fault Attack Against AES
Cryptosystem,” in CHES, ser. Lecture Notes in Computer Sci-
ence,vol. 4249. Springer, 2006, pp. 91–100.

[8] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[9] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault
Analysis on A.E.S,”CoRR, vol. cs.CR/0301020, 2003.

[10] G. Piret and J.-J. Quisquater, “A Differential Fault Attack
Technique against SPN Structures, with Application to the
AES and KHAZAD,” in CHES, ser. Lecture Notes in Computer
Science, vol. 2779. Springer, 2003, pp. 77–88.


