
Low Voltage Fault Attacks to AES
Alessandro Barenghi∗, Guido M. Bertoni†, Luca Breveglieri∗, Mauro Pellicioli∗ and Gerardo Pelosi‡

∗Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano (MI), Italy
Email: {barenghi,brevegli}@elet.polimi.it, mauro.pellicioli@mail.polimi.it

†STMicroelctronics, 20041 Agrate Brianza (MB), Italy
Email: guido.bertoni@st.com

‡Dipartimento di Ingegneria dell’Informazione e Metodi Matematici
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Abstract—This paper presents a new fault based at-
tack on the Advanced Encryption Standard (AES) with
any key length, together with its practical validation
through the use of low voltage induced faults. The CPU
running the attacked algorithm is the ARM926EJ-S:
a 32-bit processor widely deployed in computer pe-
ripherals, telecommunication appliances and low power
portable devices. We prove the practical feasibility of
this attack through inducing faults in the computation
of the AES algorithm running on a full fledged Linux 2.6
operating system targeted to two implementations of
the ARM926EJ-S on commercial development boards.

I. Introduction

The security of devices running cryptographic primitives
not only depends on the underlying mathematical assump-
tions, but also strongly relies upon a sound implementa-
tion of the target hardware or software platform. Fault
attacks aim at inducing errors during the computation
of a cryptographic primitive by altering either the con-
trol flow or the internal-state data of the cryptographic
algorithm implemented on the target device. Depending
on the fault model, the erroneous cryptograms may leak
sufficient information to extract secret key material from
the target implementation. This paper proposes a new
attack on a software implementation of AES, able to
recover the secret key of the cipher regardless of key length,
key scheduling strategy or number of rounds, under the
assumption of a known plaintext attack. This assumption
is realistic, since in many cases security devices embed
cryptographic keys for Digital Rights Management (DRM)
verification inside the chip in a non-readable manner, while
the attacker is free to choose the plaintext to encrypt.
The fault model assumed to carry out the attack is a
single byte transient fault occurring once throughout the
execution of the algorithm. More precisely, we will focus
on exploiting a fault injected in the internal state of the
cipher, instead of exploiting a fault in the key schedule
such as in [1]. This allows us to attack implementations
of AES where the key schedule has been precomputed.
To achieve this, we employ a non-invasive fault model
based on underfeeding a general purpose CPU, which has
been first described in [2], [3] and successfully used in [4]
where the authors detailed a fault-attack on a FPGA based
SPARC system and demonstrated how voltage regulations
can be exploited to target a RSA signature algorithm
implementation included into the OpenSSL library. The

methodology involves keeping the level of voltage supplied
to the processor constantly lower than the nominal one
during the whole computation, without any particular
timing, thus requiring only a very simple and cheap work-
bench. Since our attack technique is able to distinguish
exploitable faults from non exploitable ones, we are able
to discard the faults which happen in the non sensitive
parts of the algorithm from the faults used to recover the
key. The remainder of the paper is organized as follows.
Section II describes the method employed to inject the
faults in the computation. Section III presents the attack
technique and Section IV reports on the experimental
evaluation. Finally, Section V summarizes our conclusions.

II. Target Architecture and
Fault Injection Method

This section describes the target hardware architecture
employed, in order to provide grounds for reproducibility
and delineates a realistic target against which the attack
has been carried out.

Target Architecture The target architecture is an
ARM926EJ-S [5] CPU: a 32-bit RISC Harvard architec-
ture CPU with 16 general purpose registers and a 5-
stage pipeline. The ARMTM processor has a full MMU,
separate data and instruction caches each 16KB wide, and
is endowed with a memory write-back buffer. Two different
systems-on-chip (SoC) containing the ARM926EJ-S CPU

were chosen, one oriented to the computer peripherals,
the other to the telecommunications market, implemented
in two different silicon technologies, in order to validate
the applicability of the fault induction technique against
a wide range of targets. Both CPUs are embedded in a
SoC mounted on a development board, which is equipped
with DDR DRAM, on-board Flash storage, USB and Serial
RS-232 interfaces, and a 100Mbps Ethernet network card.
The telecommunication oriented SoC is also endowed with
a level 2 shared data and instruction cache 128KB wide,
and supports a working frequency up to 266MHz, twice
that of the SoC intended for computer peripherals. The
system is endowed with a U-Boot embedded bootloader,
which can load the binary to be run via the TFTP protocol.
All the attacks on cryptosystems were performed using
a Linux 2.6.15 kernel (DENX distribution) employing an
NFS partition as the root file-system. All the binaries were
compiled with the GCC 3.4 based tool chain for ARM9TM



into regular ELF binaries, which were run starting from
the shell.

Fault Injection Technique The fault injection tech-
nique is the constant underfeeding of the computing circuit
as described in [3]. The effect of a constant underfeeding
of the circuit is a rise in the setup time needed for the logic
gates to switch into a stable state. Thus, if the clock speed
is kept the same as suggested for the working conditions
of the correctly fed circuit, and the feeding voltage level is
gradually lowered, some of the slower logic paths will fail to
setup properly. In a scenario where frequency scaling of the
chip is implemented, it is always possible to induce setup
time violations through lowering the voltage until the
failures start happening even when the chip is running at
the lowest scaling frequency supported. The experimental
workbench employed to induce setup time violations is
comprised of: the device under attack; a precision power
supply unit (PSU); an Agilent 34420A voltmeter; and a
PC running Linux, in order to provide the board both
an NFS root partition via Ethernet and an easy way
to control it via a serial terminal. The employed PSU

has precision of 0.01V in the output tuning, which was
further enhanced to 1mV by employing a resistive voltage
divider. In order to decouple the voltage divider from the
actual load, we employed an operational amplifier in source
follower configuration. The equipment can be easily found
at a low price, thus also enabling attackers with a small
budget to induce exploitable faults. The characterization
of the fault model induced on the chip led us to obtain
the same results as the ones exposed in [3]: the only
operations affected by the underfeeding of the chip are
the LOAD operations. This can be ascribed to the fact
that the LOAD instructions involve very long data paths,
which are the most likely to show bit setup failures due
to the lower transition rate caused by the underfeeding.
The STORE instructions are not affected since the off-chip
memory is separately fed and the CPU is endowed with
a memory writeback buffer which considerably shortens
the critical paths on the lines. Arithmetical and logical
operations do not exhibit faulty behavior either: this is to
be ascribed to the high level of optimization of the design
of the functional units, which attempts to route very fast
lines for them. All the faulty loads are characterized by
bit flip-down errors: no events of flip-up ever occur. In
the voltage range useful to induce exploitable errors in
the computation, there is only a single bit stuck at zero
for a single LOAD operation, and its position is fixed. This
voltage range can be experimentally determined through
undervolting the actual chip sample until the faults that
happen are sparse enough, since it depends on the working
voltage and clock frequency of the chip. The effects of a
faulty LOAD instruction on the computation may concern
either the value of the computed data or the control flow of
the algorithm, thus causing different outcomes depending
on whether the load is related to an instruction fetch
(instruction swapping error) or to a data access (data load
error). Data load errors are represented as a transient

change in the value of a t-bit wide variable c during the
execution of a software routine. The faulty value c̃ equals
the correct value c minus a power of two 2ε, where ε is
the position of the fault. Possible values of ε are expressed
in the form ε=k w+i with w equal to the word length,
i∈[0, w − 1] and k∈[0, t

w ]. Instruction swapping errors
may occur in the case the faulty bit is part of either the
instruction opcode fetched (in which case, the instruction
changes to a different one) or if it is part of the condition
field (in which case, a conditioned instruction is executed
upon a different condition).

III. Attacks to AES

A. Overview of the AES Block Cipher

AES is an iterated block cipher that corresponds to a
block size restricted version of the Rijndael [6], and can
encrypt and decrypt 128-bit wide plaintext blocks using
a 128-bit, 192-bit or 256-bit key. In software, AES can be
implemented with a fully symmetric structure using only
bitwise xor operations, table-lookups and 1-byte shifts [6].
The cipher is designed to execute a number of round
transformations on the input plaintext, where the output
of each round is the input to the next one. The number of
rounds r is determined by the key length: 128-bit,192-bit
and 256-bit keys use 10, 12 and 14 rounds, respectively.
Each round is composed by the same steps, except for the
initial where an extra addition of a round key is inserted,
and for the final round where the last step (MixColumns)
is skipped. Each step operates on 16 bytes of data (referred
as the internal state of the cipher) generally viewed as a
4×4 matrix of bytes or viewed as an array of four 32-
bit words, where each word corresponds to a column of
the state table. The four round steps are: SubBytes (byte
substitution by an S-box, i.e. a lookup table for enforcing
a non linear function), ShiftRows (cyclical shifting of
bytes in each row for realizing a inter-word byte diffu-
sion), MixColumns (linear transformation which mixes
column state data for intra-word inter-byte diffusion),
and AddRoundKey (xor addition of a scheduled round
subkey, for blending together the key and the state). The
specification of the AES algorithm includes the description
of a KeySchedule procedure which is responsible for
computating of each 16-byte round key k(i), 0 ≤ i ≤ r,
given the global input key k, thus expanding the original
key material in r+1 subkeys. The AES key scheduling
process expands the cipher key k into a total of 4(r+1) 32-
bit words with r ∈ {10, 12, 14} according to whether the
cipher key length s is equal to 4, 6 or 8 words, respectively.
The resulting key schedule consists of a linear array of 32-
bit words, denoted W [0, . . . , 4(r+1)−1]. The first s words
of W are loaded with the user supplied key. The remaining
words of W are updated according to the following rule:

for i = s, . . . , 4(r + 1)− 1 do

if i ≡ 0 mod s then

W [i] = W [i− s]⊕S[W [i− 1] <<< 8])⊕RCON [i/s]

else if s = 8 and i ≡ 4 mod s

W [i] = W [i− s]⊕ S[W [i− 1]]



else W [i] = W [i− s]⊕W [i− 1]

RCON [. . .] is an array of 32-bit constants, which is useful
to eliminate symmetry or similarity amid the generated
subkeys in each round: RCON [j]=〈RC[j], 0, 0, 0〉 where the
byte values RC[j]=2∗RC[j−1] with j=0, . . . , 9, RC[0]=1,
and the multiplication defined over F28 . S[. . .] is the array
of precomputed constants corresponding to the substitu-
tion map of the cipher, and <<< 8 denotes a 1-byte left
rotation.

B. Low Voltage Induced Errors on AES

Given the error model on the loaded data presented in
Section II, we may expect that the errors induced during
the execution of an AES software implementation affect
the results through alterations in the values loaded during
each memory lookup. In particular, we drive the feeding
voltage of the device in such a way that only a single
bit of the state of the cipher is affected by a lone fault
during each encryption. The presented attack works under
the assumption of a single byte error, which, due to the
byte oriented design of the cipher, leaks information on
the internal state precise enough to be exploited. Since
the practically induced faults affect only a single bit at
once, it is practically viable to employ the fault injection
technique presented in Section II to conduct the new
attack successfully.
We now introduce a new generalized attack technique to

recover any round subkey from the AES cipher, regardless
of both the key scheduling algorithm (i.e. regardless of the
fact that the round subkeys are computed through the
standardized KeySchedule algorithm or filled completely
with a much longer cipher key), and the key length or the
number of rounds (even if exceeding the number of rounds
set by the standard). This is the first result concerning the
practical implementation of an attack to a general AES

instance instead of the largely scrutinized AES-128. The
effectiveness of the algorithmic routines described in the
following, is independent from the various optimizations
and time-memory tradeoffs employed to speed up the
AES execution (see Section IV). For the sake of clarity,
the proposed attack can be followed referring to the
plain AES implementation previously summarized. The
attack focuses on the encryption primitive and requires
a fault free ciphertext and a small number of faulty
ciphertexts generated from the same plaintext. The goal
is either to derive the s bytes composing the cipher key
k, by recovering enough key material from the last round
subkeys k(r), k(r−1), . . . , or to retrieve the subkeys of each
round. Note that the standard AES specification does not
allow the reconstruction of the cipher key by knowing
fewer than s consecutive bytes of the round subkeys (f.i.,
it is necessary to recover the last two subkeys to retrieve
the cipher key of a standard AES-256).
Piret and Quisquater in [7] introduced a differential

fault attack technique working against Substitution-
Permutation Networks, under the hypotheses of a single
byte error occurring between the last and last-but-

Function III.1: GetLastRoundKeyWord( j )

Input : j ∈ {0, 1, 2, 3}, word index of the last round subkey

Output: k
(r)
j , j-th word of the last round subkey k(r)

Data : ∆={〈δ0, 0, 0, 0〉, 〈0, δ1, 0, 0〉, 〈0, 0, δ2, 0〉, 〈0, 0, 0, δ3〉} ,
δu ∈ {x, x 28, x 216, x 224 | 0≤x<28}, 0≤u≤3,
|∆| = 255× 4× 4;

∆
′
={ d | d � MixColumns(δ), ∀δ ∈ ∆ };

ζ denotes a matrix storing a differential value of the
AES state matrix; 〈ζ0, ζ1, ζ2, ζ3〉 specifies the state
matrix as the tiling of four 32-bit words ζi, 0 ≤ i ≤ 3

Generate a random plaintex p1

/* Record a faulty and fault-free ciphertext */

c(r) � AES Encryptk(p) /* k: unknown cipher key */2

c̃(r) � Faulted AES Encryptk(p) /* k: unknown cipher key */3

Carve words w̃, w both according to j and taking into account4

the last ShiftRows operation
L � ∅ /* Set up of Candidate-Words List */5

foreach k̄ ∈ {0, . . . , 232 − 1} do6

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉7

ζj � InvSubBytes(w ⊕ k̄)⊕ InvSubBytes(w̃ ⊕ k̄)8

if 〈ζ0, ζ1, ζ2, ζ3〉 ∈ ∆
′
then L � L ∪ { k̄ }9

/* Word Selection Phase */
while |L| > 1 do10

Generate a random plaintext p11

/* Record a faulty and fault-free ciphertext */

c(r) � AES Encryptk(p) /* k: unknown cipher key */12

c̃(r) � Faulted AES Encryptk(p)13

Carve words w̃, w both according to j and taking into14

account the last ShiftRows operation
foreach k̄ ∈ L do15

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉16

ζj � InvSubBytes(w ⊕ k̄)⊕ InvSubBytes(w̃ ⊕ k̄)17

if 〈ζ0, ζ1, ζ2, ζ3〉 /∈ ∆
′
then L � L \ { k̄ }18

return k
(r)
j /* L = {k̄}, k̄ = k

(r)
j */19

one linear diffusion operation of the cipher, and the
availability of pairs of faulty and fault free ciphertexts
corresponding to the same plaintext. The attack in [7]
provides a distinguishing criteria for the useful faults,
using the diffusion property of the last MixColumns in
order to determine whether an erroneous ciphertext was
caused by a single byte difference between the last and
last-but-one MixColumns operation. In the following
we describe an algorithm able to pierce successfully a
regular round of the AES cipher (i.e. one including the
MixColumns), thus obtaining a method able to roll back
the whole cipher and retrieve all the round subkeys
regardless of their mutual relations or the number
of rounds. Consider a generic instance of the AES

cipher with r rounds, keylength of s words and 16-byte
input/output blocks. Denote a faulty ciphertext as
c̃=〈c̃0, c̃1, c̃2, c̃3〉, and a fault-free one as c=〈c0, c1, c2, c3〉,
where c̃u, cu, 0≤u≤3, are 32-bit words. The evaluation
of possible differences between c̃u and cu (caused by a
single byte fault between the last and the last-but-one
MixColumns step) adds up to 255×4×4 different values.
Indeed, such values can be listed through enumerating
all the state tables resulting from changing a single
fixed-position byte value, and then repeating the change
for each one of the 16 bytes composing the state table, i.e.:
∆={〈δ0, 0, 0, 0〉, 〈0, δ1, 0, 0〉, 〈0, 0, δ2, 0〉, 〈0, 0, 0, δ3〉} ,



δu ∈ {x, x 28, x 216, x 224 | 0 ≤ x < 28}, 0 ≤ u ≤ 3.
The inter-byte diffusion operated by the last
MixColumns maps bijectively each difference
value into another thus obtaining another set of
differential state tables with the same cardinality of
∆: ∆

′
= { d | d � MixColumns(δ), ∀ δ ∈ ∆ }.

The diffusion layer (MixColumns) is not perfect and
only spreads a single bit difference on a quarter of the
inner state (i.e. diffuses a single byte change over a single
column (word) of the inner state). The exploitation of this
peculiarity of the AES diffusion layer allows to conceive
a 32-bit word based implementation of the attack, which
retrieves the whole last round subkey k(r) in four passes,
sweeping a candidate space of 232 values at most, for
each word k

(r)
j , j∈{0, 1, 2, 3}. Function III.1 details the

procedure to recover one of the last subkey words and takes
as input the list ∆

′
of all the differences that may occur

just after the last MixColumns operation (in the (r−1)-
th round), and the position j corresponding to the target

word of the last subkey k
(r)
j it is intended to retrieve. As

a first step (lines 3–6), Function III.1 records a faulty c̃
and fault-free ciphertext c, carves words w̃, w according
to the target position index j and taking into account the
last ShiftRows operation. Then, for each possible value
of the j-th word of the last subkey, k(r), it computes
the difference ζj between the state tables corresponding
to c and c̃ just after the last MixColumns operation:
ζj � InvSubBytes(w ⊕ k̄)⊕ InvSubBytes(w̃ ⊕ k̄). If ζj is
included in the set ∆′ then the value of the corresponding
subkey word k̄ is inserted in a list L of candidate words.
Subsequently (lines 7–12), until L contains only a single
value, another pair of faulty and fault-free ciphertext is
collected. This usually requires only one extra faulty and
fault free ciphertext to narrow down the key candidates
to a single one, as it is easily verifiable in practice. Then,
for each candidate key in L the differential value corre-
sponding to the new faulty and fault-free ciphertexts is
computed in order to verify that such value is effectively
included in ∆

′
. If the value k̄ is not included in ∆′,

the candidate is removed from the list L. At the end
of this sieving phase, L will contain a single value for
k
(r)
j . Algorithm III.3 rolls back both the last (r-th) and

the last-but-one ((r−1)-th) rounds of the AES cipher,
thus retrieving the last two subkeys: k(r) and k(r−1). The
implemented method allows to circumvent the security
criteria in the design of the AES cipher, thus highlighting
a new serious vulnerability even when employing the
parameters recommended for maximum security of the
cipher (256-bit key). In order to recover the last subkey
k(r), the algorithm (lines 4–5) iterates Function III.1 for

each of the four words: 〈k(r)0 ,k
(r)
1 ,k

(r)
2 ,k

(r)
3 〉. In order to

retrieve the (r−1)-th subkey, k(r−1), we collect erroneous
ciphertexts resulting from a single byte fault that occurred
between the last-but-one MixColumns in the (r−2)-th
round, and the last-but-two MixColumns operation in the
(r−3)-th round. This kind of fault will result in a complete
corruption of the state c̃(r−1) by the end of the last-

Function III.2: GetDifferential(p, k(r))
Input : p, random plaintext;

k(r), last round key;
Output: 〈c(r−1), c̃(r−1), δj , j〉,

c(r−1): output of the last-but-one round in a fault
free computation

c̃(r−1): output of the last-but-one round in a faulty
computation

δj : one word difference between faulty and faulty free
state after the SubBytes of the (r−1)-th;

j ∈ {0, 1, 2, 3}: position of the only non-zero word in
the aforementioned difference

c(r) � AES Encryptk(p) /* k: unknown cipher key */1

/* fault-free last-but-one round output */

c(r−1) � InvSubBytes
(
InvShiftRows

(
c(r) ⊕ k(r)

))
2

repeat3

c̃(r)�Faulted AES Encryptk(p) /* k: unknown cipher key */4

c̃(r−1)�InvSubBytes (InvShiftRows(c̃(r)⊕k(r)))5

/* MixColumns in the (r − 1)-th round */

〈δ0, δ1, δ2, δ3〉�InvShiftRows(InvMixColumns(c̃(r−1)⊕c(r−1)))6

until ∃ ! j ∈ {0, 1, 2, 3} | δj 6= 07

/* Here δj 6= 0, as lone non-zero differential word at the

output of the (r−1)-th SubBytes, is due to a single byte fault

happened between the (r−2)-th and the (r−3)-th MixColumns */

return 〈c(r−1), c̃(r−1), δj , j〉8

but-one round. In order to distinguish the induced errors
which respect this hypothesis from the non useful ones,
we arranged Function III.2 (GetDifferential) to cope
with the diffusing effect of the last MixColumns operation
and to bypass the obfuscation provided by the (r−1)-th
AddRoundKey. Given a random plaintext p and the last
subkey k(r), Function III.2 returns the differential between
the corresponding j-th words of the faulty free state matrix
and the faulty state matrix after the SubBytes of the last-
but-one round (j∈{0, 1, 2, 3}). Function III.2 repeatedly
computes a new faulted ciphertext c̃(r) and derives the
corresponding output of the last-but-one round, c̃(r−1)

in order to consider the differential value c̃(r−1)⊕c(r−1).
This value (line 6) can be safely transformed through an
InvMixColumns since the operation is linear w.r.t the
xor, and subsequently passed through a InvShiftRows

primitive to realign the bytes, obtaining the alleged (r−1)-
th SubBytes output as 〈δ0, δ1, δ2, δ3〉. A useful fault for our
purposes is recognized checking whether there is a single
non-zero word δj . In case the fault is not useful, the func-
tion discards the faulty ciphertext and starts examining a
new one. Once a useful fault has been found, the function
GetDifferential returns the non zero word differential,
δj , and its relative position within the state matrix (j),
together with the corresponding values c(r−1), c̃(r−1).
Algorithm III.3 uses Function III.1 to extract the last
round subkey k(r) (line 2), generates a further random
plaintext (line 4) and searches for convenient faulty cipher-
texts (with a single byte fault between the last-but-one
and the last-but-two MixColumns) until it finds a set of
candidate words for the intermediate value of the correct
ciphertext at the output of the SubBytes stage (in the
(r−1)-th round) (lines 5–12). Each candidate word for the
alleged output of the (r−1)-th SubBytes is stored in a



Algorithm III.3: Fault Attack to the AES

Output: (k(r−1), k(r)), subkeys of the last two rounds;
Data: ∆={〈δ0, 0, 0, 0〉, 〈0, δ1, 0, 0〉, 〈0, 0, δ2, 0〉, 〈0, 0, 0, δ3〉} ,

δu ∈ {x, x 28, x 216, x 224 | 0≤x<28}, 0≤u≤3,
|∆| = 255× 4× 4;

∆
′
={ d | d � MixColumns(δ), ∀δ ∈ ∆ };

ζ denotes a matrix storing a differential value of the AES
state matrix; 〈ζ0, ζ1, ζ2, ζ3〉 specifies the state matrix as
the tiling of four 32-bit words ζi, 0 ≤ i ≤ 3

begin1

/* k(r) = 〈k(r)0 , k
(r)
1 , k

(r)
2 , k

(r)
3 〉 */

foreach j∈{0, 1, 2, 3} do k
(r)
j �GetLastRoundKeyWord(j)2

/* Lj�{. . .} will include the candidate values of faulty

free ciphertext words resulting after the SubBytes in the

(r−1)-th round. */

foreach j∈{0, 1, 2, 3} do Lj � ∅3

Generate a random plaintext p4

repeat5

〈c(r−1), c̃(r−1), δj , j〉 � GetDifferential(p, k(r))6

foreach w∈{0, . . . , 232 − 1} do7

/* Guess on the values of the j-th word of a

candidate faulty-fault free pair of state matrices

after the (r−1)-th SubBytes */

w̃ � w ⊕ δj8

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉9

ζj � InvSubBytes(w̃)⊕ InvSubBytes(w)10

/* 〈ζ0, ζ1, ζ2, ζ3〉: differential value at the output

of the (r−2)-th round */

if 〈ζ0, ζ1, ζ2, ζ3〉 ∈ ∆
′
then Lj � Lj ∪ {w }11

until ∀ j ∈ {0, 1, 2, 3}, Lj 6= ∅12

while ∃ j ∈ {0, 1, 2, 3}, |Lj | > 1 do13

〈c(r−1), c̃(r−1), δj , j〉 � GetDifferential(p, k(r))14

foreach w∈Lj do15

w̃ � w ⊕ δj16

〈ζ0, ζ1, ζ2, ζ3〉 � 〈0, 0, 0, 0〉17

ζj � InvSubBytes(w̃)⊕ InvSubBytes(w)18

/* 〈ζ0, ζ1, ζ2, ζ3〉: differential value at the output

of the (r−2)-th round */

if 〈ζ0, ζ1, ζ2, ζ3〉 /∈ ∆
′
then Lj � Lj \ {w }19

/* L0 = { w̄ 0}, L1 = { w̄ 1}, L2 = { w̄ 2}, L3 = { w̄ 3} */

k(r−1)�c(r−1)⊕MixColumns(ShiftRows(〈 w̄ 0, w̄ 1, w̄ 2, w̄ 3〉))20

return (k(r−1), k(r))21

end22

different set Lj , j∈{0, 1, 2, 3}, depending on the position
index of the corresponding 32-bit word into the state
matrix. Once all the lists Lj are filled with at least a single
candidate word, a pruning phase takes place (lines 13–
19). This second phase aims at reducing the number of
candidates contained in each list, through further sieving
of non-compatible candidates. It is also possible to skip
this pruning phase altogether if the candidate lists are
small enough to allow a brute force search over all the
possible keys. The pruning phase is performed generating
new faulty ciphertexts and checking which key candidates
are still valid through iterating the same criterion used
to include the guesses in the candidate lists Lj . In the
case a candidate word does not pass the check, it is
removed from the list (lines 16–19). The existence of a
correct key candidate and the correctness of the fault
hypothesis ensure that the lists Lj will never be emptied.
After obtaining a single candidate for each of the four
words at the output of (r−1)-th SubBytes, it is possible
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Figure 1. Distribution of single byte faults over the rounds of an
AES-128 implementation

to apply ShiftRows and MixColumns operations in order
to find the correct value of the state matrix in input to
the last-but-one AddRoundKey. In order to retrieve the
(r−1)-th round subkey k(r−1), it suffices to compute a
further xor with c(r−1) (line 20). The procedure described
by Algorithm III.3 can be easily adapted to fully invert
the effect of any round of the AES algorithm by removing
the rounds one by one.

IV. Experimental Results

We now provide experimental evidence of the prac-
ticality of the algorithmic techniques exposed in Sec-
tion III, and report the results of conducting them on
an ARM9TM CPU. We report figures of merit for both
the attack strategies proposed in [7] and the framework
introduced in the previous sections, which allows us to
attack any number of rounds of any AES cipher. All the
the CPU caches (both L1 and L2 when available) were
enabled during the experiments and the frequency set to
the maximum one supported, in order to evaluate the
attack in unsimplified working conditions. The enciphering
procedure of AES is amenable to several software imple-
mentations which trade-off memory and computational re-
sources [6]. We considered three different implementations:
the first one combines the different steps of the round
transformation in a set of four lookup tables (named T -
tables), which is also the reference implementation used
in OpenSSL project; the other two implementations use
a single T -table and the standard S-box, respectively.
Since the CPU caches can have a mitigating effect on the
injection of faults, the time-memory tradeoffs exposed by
these three implementations allow to precisely ascertain
the impact of the ARM9TM data caching policies on the
effectiveness of the attack. The feasibility of the attack
is dependent on the injection of one byte faults in a
specific word of a round of the cipher. To this end, it is
important to estimate the statistical distribution of faults
over the cipher states. Figure 1 depicts the faults spread
on the first 10 rounds of the AES-128 algorithm, obtained
through collecting 100K faults and classifying them by
the round they hit. This was done through inverting the
faulty ciphertexts with the known key and calculating
the differences between each state of the correct and the
erroneous runs until the single byte difference was found.



The depicted data refer to the 4 T -table implementation of
AES; the results about the other implementations are quite
similar. As the figure shows, the faults are almost equally
distributed on the first r−1 rounds of the cipher, except
for the last one which has a sensibly lower probability
to be hit. The estimated fault distributions for AES-192
and AES-256 algorithms are analogous to the reported one
except for the larger number of rounds.

Table I
Percentages of faults hitting each word of the state at the

(r−1)-th round, over 50k injected faults, reported for
O1/O2/O3 gcc optimization levels

State Faults hitting count [%]

Word 4 T -tables 1 T -table S-box

1st 25.1/24.4/24.6 25.0/25.0/25.5 24.8/24.3/20.7

2nd 24.7/25.0/24.1 25.6/25.0/25.1 25.1/25.8/19.2

3rd 24.6/25.1/25.9 23.9/24.3/24.7 24.8/26.2/20.6

4th 25.5/25.3/25.3 25.3/25.5/24.6 25.1/23.6/39.4

A more precise analysis takes into account the fault
distribution over the state of a single round considering
also the effect of the optimization strategies employed by
the compiler on the cipher code. This is mandated by
the fact that aggressive optimizations may employ the
coalesced instructions of the ARMv5TE architecture which
may alter the fault spread over the words of the state.
Table I reports the fault spread over the words of the state
matrix at the output of the penultimate round of AES-
128, averaged over 50K faults for each implementation and
evaluated for each optimization level to which the GCC

compiler was set. The reported results depict a uniform
spread of the faults over all the four words of the inner
state of the cipher (regardless of the implementation or
the optimization grade of the binary). Therefore, even if
the injection of faults cannot be time-driven, it is sufficient
to collect more ciphertexts to obtain exploitable faults.
We compared the performance of Algorithm III.3 versus
the method described in [7]. Thus, in order to further
validate the applicability of the presented under-voltage
fault model, we collected 50K faulty ciphertexts from
2000 different plaintexts and processed them offline on an
Intel R© CoreTM i7–920 (over-)clocked at 4.0GHz and run-
ning Ubuntu Linux 9.04. The algorithms are implemented
in C++ using POSIX standard threads in order to split the
load on the four cores of the machine. Table II summarizes
the performances of the two attacks for all key lengths of
the AES.

Table II
Attack Performances while processing 50K faults

Alg. [7] Alg. III.3

Key Size [bit] 128 128 192 256

Execution Time 1′ 1′ 2′ 2′21′′

Mem. Footprint [kB] 480 480 500 605

N. of useful faults 8 8 12 16

Avg. N. injected faults 84 84 106 252

The generalized attack to AES (Algorithm III.3) has the
same performance of [7] as far as the AES–128 case goes
(since it actually uses it), whilst requiring 12 faults for
AES–192 (eight for the last subkey and four for the last-
but-one subkey), and 16 faults for AES–256 (eight for the
last round subkey and eight for the last-but-one subkey).
The last row of Table II reports that, on average, 106 and
252 faulty ciphertexts are respectively enough to obtain
the 16 correct ones required to retrieve either the AES–
192 or the AES–256 cipher key. The measured CPU time,
employed to run Algorithm III.3, amounts some minutes
with a memory footprint of about 500KB, thus well within
the reach of a common desktop. Indeed, it is possible to
successfully break the AES cipher through executing on
average 100K encryptions with different plaintexts (used
to retrieve the r-th subkey) and 2000K encryptions with
the same plaintext ((r−1)-th subkey). This quantity of
ciphertexts can be easily collected by an attacker in posses
of the physical device, regardless of the mode of operation
of the cipher since the system on chip may be re-set, thus
leading to the re-encryption of the same plaintext at will.

V. Conclusion

In this paper we present a new attack to AES, able to
break the cipher regardless of the keylength, the number
of rounds or the key schedule choice in only a few minutes.
The attack proposed has been practically carried against
a widely deployed CPU, the ARM926EJ-S, embedded in
a realistic, production grade, environment employing a
very simple and low cost workbench and not leaving any
evidence of tampering with the device. Countermeasures
may be based on the introduction of redundancy in the
calculations and the appropriate choices are demanded to
future researches.
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