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Abstract—Fault injection attacks are a powerful tool to exploit
implementative weaknesses of robust cryptographic algorithms.
The faults induced during the computation of the cryptographic
primitives allow to extract pieces of information about the secret
parameters stored into the device using the erroneous results.

Various fault induction techniques have been researched, both
to make practical several theoretical fault models proposed in
open literature and to outline new kinds of vulnerabilities.

In this paper we describe a non-invasive fault model based
on the effects of underfeeding the power supply of an ARM
general purpose CPU. We describe the methodology followed
to characterize the fault model on an ARM9 microprocessor
and propose and mount attacks on implementations of the RSA
primitives.

Index Terms—Low voltage Fault Attacks, Hardware Security,
RSA attacks.

I. INTRODUCTION

The security of devices running cryptographic primitives not
only depends on the underlying mathematical assumptions, but
also strongly relies on a sound implementation on the target
hardware or software platform.

Attacks targeting implementations instead of algorithms
themselves are usually categorized into two main groups: side-
channel attacks and fault attacks.

Side-channel attacks try to infer part of the secret informa-
tion employed by cryptographic algorithms through statistical
methods applied on physical parameters measured externally
on the device (e.g., power consumption, timing information,
electromagnetic radiations).

Fault attacks aim at inducing errors during the computation
of a cryptographic primitive by altering either the control flow
or the internal-state data of the cryptographic algorithm im-
plemented on the target device. Depending on the fault model,
the erroneous cryptograms may leak sufficient information to
extract secret key material from the target implementation,
even if the cryptographic algorithm is mathematically secure
and endowed with countermeasures against other side channel
attacks.

In this paper we describe a non-invasive fault model based
on the effects of underfeeding the power supply of a general
purpose CPU. Our methodology involves keeping the level
of voltage supplied to the processor constantly lower than
the nominal one. We characterize the faults happening during

computations in these imposed working conditions both under
a quantitative and a qualitative perspective. We propose some
attack techniques which exploit the newly characterized fault
model and provide experimental evidence of their practical
feasibility.

The remainder of the paper is organized as follows. Sec-
tion II describes related work. Section III describes the method
employed to delineate a characterization of the faults which
may be injected through underfeeding a general purpose CPU.
Section IV presents three possible attack models deemed
feasible with the newly introduced fault model and Section V
reports the experimental evaluation for two of them. Finally,
Section VI summarizes our conclusions and points towards
future research directions.

II. RELATED WORK

Following the classification proposed in [1], fault induction
techniques may be split into two main categories: those
inducing transient faults and those inducing permanent faults.

While the latter are usually much more powerful, as far
as the information leakage goes, the former are considered
the sensible scenario against which devise defenses due to
their repeatability and lack of tampering evidences left on the
device.

Transient faults are known to be injectable through several
methods, namely: irradiation of the device, EM-inducted dis-
turbances, clock phase shiftings, and alterations in the power
supply.

The first technique relies on altering the state of the circuit
by irradiating directly the silicon die through the use of a
concentrated light beam, either polarized (laser beams) or
unpolarized (common flashes) [2]. The beam is usually timed
in order to achieve changes in the values stored in SRAM cells
or in registers and either allowing modification or inferences
on the values previously contained. The alterations may be
as precise as a single bit assuming it is possible to focus the
beam on a spot as wide as a single gate. This constraint is
becoming increasingly difficult to comply with, since the new
etching technologies are able to print sub-visible wavelength
wide gates.

EM-induced faults are a recent technique by Schmidt and
Hutter [3] and can be achieved through small electrical dis-



charges generated near the sensitive device with the help
of a pair of small electrodes. The technique can be timed,
although not with clock cycle accuracy, and has the advantage
of avoiding the decapsulation of the chip. On the other hand,
there is no way to aim the fault at small sensitive zones of
the chip. Moreover, packages providing inbound EM-shielding
(e.g. grounded metal heat spreader ones) are able to thwart the
attack.

As far as the non-package lesive techniques go, it might
be possible to insert phase shifts on the clock line through
manipulating the position of the rising and falling edges. This
tampering may induce instruction skipping in small microcon-
trollers, therefore altering the control flow of the algorithm,
possibly leaking sensitive information. Until now, no practical
implementations of these attacks have been proposed in the
open literature.

Another transient fault induction technique relies on the
capability of altering the yield of the power supply line. A
first method consists of inserting tiny, well timed glitches,
realized with either spikes or temporary brown-outs, aimed at
disrupting the value held on the input lines of flip-flops during
their setup time. This causes incorrect values to be stored in
latches thus possibly resulting in either instruction skips or
data corruptions. A practical example of an attack brought to
a plain square-and-multiply RSA software implementation on
a PIC Microcontroller through this technique is given in [4].

Another method of injecting fault relies on constantly un-
derfeeding a device to alter the values stored by its bistables
due to the slowdown in the logical gate setup time. In [5] the
authors report a faulty behavior of the lines at the end of the
longest combinatorial cones of a smart card implementation
of AES, and exploit it in order to carry a successful attack
using the method proposed by Piret et al. in [6]. This method
has the advantage of not being influenced by either the etching
technology of the chip or the packaging, and relies only on the
very reasonable assumption of being able to alter the feeding
line of the chip. Until now, only a single experimental result
of a succesful attack employing this technique by Amiel et al.
is reported in [7].

III. POWER HUNGER FAULTS ON GENERAL PURPOSE
PROCESSORS

In this paper we are presenting a new fault model which
relies on uniformly underfeeding a general purpose CPU.

Lowering the voltage at which a device is fed raises the
setup time for the latches of the circuit and slows down the
propagation of signals on the bus lines. What we are expecting
is to see a growing number of faults appearing when the
feeding voltage is pulled under the nominal operating range.
Due to tiny differences in the circuitry we foresee that some
of the bistables will fail to hold the correct values more often
than others, thus showing strong spatial locality in the faults.
We are not timing the underfeeding in order to obtain a more
widely applicable technique which will not be relying on sub-
clock accurate injectors. This enables us to apply this method
despite the rising clock frequencies and the shrinking etching

technologies which represent a serious impairment to other
techniques.

We will now describe the workflow which led us to a full
characterization of the fault model using as target platform
an ARM-9 microprocessor1 due to its widespread diffusion in
both embedded architectures and low power general purpose
computers. Since the SoC has three separate supply lines,
one for the core, one for the I/O buses and one for the
memory interface, we chose to interact with the one feeding
the computational part, due to its tight coupling with the
execution flow of the binaries run on the device.

The experimental platform used to investigate the effects of
the fault is an ARM based development board, specifically
a SPEAr Head200 [9] built by ST Microelectronics, fed
through an Agilent 3631A power supply with a 1mV precision.
The voltage measures were taken with an Agilent 34420A
voltmeter with a nV precision probe. The probe programs are
written in ANSI C, compiled into ARM binaries through a
development toolchain based on the GCC compiler. The object
code is subsequently loaded on the platform through the U-
Boot embedded bootloader [10].

A. Voltage Range Exploration

The first step in evaluating the fault model is to determine
the undervolting level at which faults begin to appear and
the lower bound of the working voltage range. The bottom
threshold for the voltages used during the experiments is easily
determined since the UART interface stops outputting anything
under a specific voltage level, thus impeding the retrieval
of any information from the system. In order to detect the
upper bound of the fault induction range we tested the correct
functioning of the CPU using a simple probe program whose
core loop is reported hereafter.

for(a=i=0; i<1000000; i++){
a = a + 1;
if(a != i+1){

printc(’?’);
if(a!= i+1){

printc(’#’);
a = i+1; // fix the fault
if (a != i+1) a = i+1;

}
}

}

The aforementioned code increments a variable a million
times, and checks if a fault has happened exactly after the
increment. A redundant check has been added in order to lower
the likelihood of a false positive occurring in the detection. We
consider an actual fault to have happened only if both checks
confirm it.

Figure 1 shows the increase of the number of faulty out-
comes of the computation when sweeping the voltage range at
which the CPU starts to malfunction. The represented values
were computed averaging 500 thousands runs of the code
for each voltage level probed. The picture delineates a linear

1Specifically, an ARM926EJ-S [8].



growth of the percentage of faulty computations triggered by
the lapse in the voltage supply. The voltage point at which the
probability of a faulty outcome matches the one of a correct
computation is highlighted by a dashed line. We expect that,
below this threshold voltage, multiple faults will be taking
place within a single run, thus increasing the likelihood of
a miscomputation. In order to characterize the causes of the
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Figure 1. Percentage of correct and wrong computations averaged over 500
thousands runs.

errors in the computations, we split the results into three
groups according to the number of faults which triggered them.

Figure 2 shows a 1.5 mV wide voltage range where a single
fault happens. Above the aforementioned threshold voltage
the probability of having a faulty computation triggered by
a single fault ranges from 2% to 40%. This probability dwarfs
the one of having multiple faults contributing to the erroneous
result. When working under the threshold, the number of
possible faults starts growing, and multiple fault scenarios
start to dominate the fault profile. All the previous figures
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Figure 2. Distribution of the quantity of the injected faults as a function of
the voltage.

are obtained by keeping constant the number of instructions
actually executed by the CPU during the measurements. It is
sensible to assume that a growth in the executable code size

will be met by an analogous rise in the probability of a fault
appearing during the computation. This observation suggests
that the most useful voltage point for controlled, and thus
exploitable, fault injection is the farthest reachable from the
threshold. Using this criteria in order to determine the working
voltage point will lead to a longer fault collection campaign
due to a reduced incidence of faults.

B. Fault Characterization

Having ascertained the possibility of injecting a reasonably
low number of faults per computation, we moved on to a
finer grained characterization. The assembly level instruction
in a code flow may be split into three categories according to
the architectural units composing the CPU which are used to
complete them. The three categories are arithmetical-logical
operations, memory operations and branch instructions.

Memory instructions represent the most expensive operation
class in terms of power consumption, therefore they are
allegedly the most vulnerable to underfeeding issues.

In order to ascertain this, we recompiled the same probe
program instructing the compiler to keep the variables in the
CPU registers during the whole computation.

The execution of the tuned program showed no faults,
thus indicating that the wrong values detected by the checks
were uniquely to be ascribed to memory operations, while
both arithmetical-logical and branch instructions ran correctly
regardless of the voltage.

The low voltage fault immunity exposed by the CPU
registers is to be ascribed to the low capacitance design of
their implementation. This requirement is dictated by the
architectural need of fast accesses to the component, which
is mandatory in order to design efficient units.

The next step in the characterization of this new kind of
fault was checking if both load and store instructions were
equally affected. In order to verify which memory instructions
are affected by faults, it is possible to use the value held in the
registers as a fault free value for checks. We set up a probe
program which moved to and from the memory all-zero and
all-ones words, and ran it multiple times, sweeping the whole
voltage range found before.

The programs running load instructions turned out to be
the only ones reporting misexecutions.

The ARM architecture sports three different supply lines,
one for the memory interface, one for the I/O buses and one
for the core. Since we are mangling only the voltage level
of the last line, the aforementioned behavior may be sensibly
ascribed to the fact only the memory operations which are
storing values on the underfed part (i.e. the load operations
which store information in the registers) suffer from the lack
of power. On the other hand the store operations are placing
the data on a properly fed part of the architecture.

C. Fault Localization

The experiments run up to now characterize the faults as
affecting only load instructions and, as far as their number
in a single execution goes, depending on the supplied voltage.



We are now willing to investigate whether the faulty be-
havior of the load instructions is depending either on the
referenced memory address or on the loaded value.

In order to understand this key point, a probe program was
designed to overwrite a one million 32-bit word array with 1s,
and subsequently to check the values which were loaded back
into the registers, while keeping the voltage in the single fault
functioning range. During this test the data cache included in
the ARM9 processor was disabled.

Figure 3 shows the number of faults occurred while per-
forming 106 load operations of a 32-bit integer from the
aforementioned array. In order to analyze the data, the probed
memory has been partitioned in 40 kB wide zones. We
encountered 1864 faulty loads while running the program,
thus we are expecting an average of 18.64 faults per zone
in case of a uniform distribution. The dashed line in Fig. 3
indicates the expected number of faults occurring for each
zones, assuming a uniform distribution of the faults over the
memory. To confirm the hypothesis of a uniform distribution
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Figure 3. Distribution of the quantity of the injected faults as a function
of the position in the address space. The dashed line indicates the expected
average value in the hypothesis they are uniformly spread.

of the faults over the whole address space, we modeled the
position hit by the fault as a random variable and we conducted
a Pearson χ2 test to assess the goodness of fit. The results
confirmed our hypothesis with a confidence level near to
100%.

After investigating the dependence of the faults from the
memory address of the loaded value, we decided to evaluate
their impact on the fetched values.

Examining the faulty values we noticed that the corruption
pattern is fixed within each retrieved word, independently of
the address at which the word was stored.

All the faults occur as single bit flip-downs and their
position changes only when testing different chip samples.

D. Instruction Faults

After having a well defined model for the faults occurring
during the loads from memory, we tried to achieve control
flow alterations through corruptions in the instruction fetch

phase. We therefore disabled the instruction cache present in
the ARM microprocessor in order to fetch the instructions
directly from the main memory, and devised a test program in
order to spot possible faults which may modify the opcode of
the instructions through altering its binary encoding.

In particular, the affected instructions will be transformed
into the ones having a binary encoding differing only by a
flip-down of the faulty bit. For instance, through a single bit
flip-down a possible instruction swap is the following one.

AND R1,R1,#0x42 // Fault Free
EOR R1,R1,#0x42 // Faulty

Since the “and” and the “exclusive-or” instructions have a
radically different behavior, it is possible to alter the inner
working of the algorithm through swapping them.

An important feature of the ARM architecture is also the
opportunity of executing all the arithmetical-logical instruc-
tions conditioned by a binary predicate. It is therefore possible
to flip the check of every predicate and obtain instruction
skipping as depicted in the following code sample.

ADDNE R1,R1,#0x42 // Fault Free
ADDEQ R1,R1,#0x42 // Faulty

Moreover, since also the branch driving mechanism relies on
the same condition bits of the predicate checking one, the
control flow of the program may be equally altered if the
condition bit of a branch is flipped.

BNE LOOP // Fault Free
BEQ LOOP // Faulty

We have been able to reproduce all the aforementioned al-
terations on our chip samples. Since the alterations are chip
dependent, the exploitation of this kind of fault requires to
know precisely which bit is affected by the fault thus deter-
mining which instruction swaps are performed. It is possible
to define all the possible mutations, depending on which bit
is altered and therefore devise specific attacks exploiting each
one of them.

E. Underfeeding Inducible Faults

In order to exploit the type of faults we are able to induce,
we now propose description of the fault model which aims
at being independent of a specific chip instance used. Albeit
originating from the same cause, i.e. faulty load operations,
we may distinguish two different effects of the faults: data
corruption and instruction swap. For the sake of clarity, we
will deal separately with the two outcomes in order to point
out better how they can be exploited.

Data related faults are representable as a transient change
in the value of a t-bit wide variable c during an execution.
In particular they are single bit flip-downs placed in a fixed
position embedded into the microprocessor word. The faulty
value c̃ equals the correct one c minus a power of two 2ε

where ε is the position of the fault. Possible values of ε are
expressed in the form ε = k w + i with w equal to the word
length, i ∈ [0, w − 1] and k ∈ [0, t

w ].



Instruction related faults define a one way swap between two
classes of instructions whose binary encoding of the opcode
differs by only a single bit. The swap occurs only a limited
amount of times, determined by the level of underfeeding of
the device, and may be reduced up to a single one in the whole
computation of a target algorithm.

IV. ATTACKS

To exhibit a some practical applications of our fault model,
we now propose three attacks, exploiting fault injection
through power draining, to a software implementation of the
RSA cryptosystem on an ARM-9 processor.

Throughout the description of the attacks, we will use the
following notation: let p and q be two large primes and let
n = pq be the RSA modulus. Let e, d be two unitary elements
in (Z∗

ϕ(n), ·) representing the public and private exponent
bound together by the congruence d = e−1 mod ϕ(n). Let
t = dlog2 ϕ(n)e denote the length of their binary encodings.
Having m, c ∈ Z∗

n, we denote a generic RSA plaintext-
ciphertext pair as c = me mod n. Having m, s ∈ Z∗

n, we de-
note a generic RSA message-signature pair as s = md mod n.

A. Bellcore Attack

The Bellcore attack [11] enables to factor the modulus
n through inducing an error during the computation of the
exponentiation phase of any RSA primitive implemented using
the Chinese Remainder Theorem.

Let s = CRT (mp,mq) denote the CRT recombination of
the value s = md mod n from the two values sp = md mod p
and sq = md mod q:

s =
(
sp + p ((sq − sp)(p−1 mod q) mod q)

)
mod n

If a fault occurs during the computation of sq while the
computation of sp remains error free, we may denote the
faulty value of sq as s̃q = sq + ∆. Therefore, the faulty CRT
recombination will yield s̃ = CRT (sp, s̃q), given by:

s̃ = s + p
(
∆(p−1 mod q) mod q

)
mod n

Since the value s̃−s shares a nontrivial factor with the modulus
n, it is possible to extract p = gcd(s̃−s, n) efficiently through
Euclid’s Algorithm.

Moreover, as showed in [12], the modulus factorization is
also computable using only the message m and one faulty
computation of the signature s̃, through calculating p =
gcd(s̃e −m,n).

The main advantage of this technique is that any kind of
fault induced in the computation of one of the two values
to be recombined with the CRT will yield a useful faulty
computation regardless of precise timing and placement.

B. e-th Root Extraction Attack

The target of this attack is to retrieve the input message
encrypted through RSA using a correct and a faulty encryption
of the same message. A practical applicative scenario could
be the retrieval of the session key during an RSA-KEM [13]
handshake. This assumes that the party which is in charge

to choose the session key re-encrypts the same value in case
a faulty encapsulation occourred. To the best of the author’s
knowledge this technique has not yet been used in order to
mount a fault based attack.

Consistently with the fault model described in Section III-E,
the injected fault is supposed to corrupt a single bit of the
public exponent e in a fixed position ε ∈ [0, t− 1]. When this
happens, we are able to obtain a faulty ciphertext, henceforth
denoted as c̃, which can be represented as c̃ = me−2ε

mod n.
We observe that the number of possible positions of the fault

are exactly t/w where w indicates the word length of the CPU.
Thus, to spot the location of the faulty bit, we need to iterate
the plaintext retrieval algorithm (Algorithm IV.1) t/w times
and check through re-exponentiation if the retrieved message is
correct. This is still computationally feasible since t/w grows
logarithmically w.r.t. the exponent. Through this check we can
also discard all the faulty ciphertexts generated by errors which
did not alter the exponent, since the re-exponentiated value
will fail to match the ciphertext for all the possible positions
of the fault.

From now on, we will be in need to calculate inverses
over (Z∗

n, ·). We want to point out that, even though (Z∗
n, ·)

encompasses zero dividers, this will not be a problem since,
in the event that the chosen number c̃ is not a unitary element
of (Z∗

n, ·), this implies that being a zero divider, is therefore a
multiple of either p or q. This immediately implies that if we
compute gcd(c̃, n) we will obtain a nontrivial divider of the
modulus, thus breaking the cryptoscheme.

Since we can compute inverses over (Z∗
n, ·), we are able

to operate subtractions between the exponents of the faulty
and the correct ciphertext through multiplying c c̃−1 mod n.
This will enable us to reduce the exponent of c to one, thus
effectively recovering the plaintext: Algorithm IV.1 describes
how the retrieval is performed.

Through exploiting the single-bit nature of the fault, at first
(line 2) the algorithm computes the value of the message
raised to 2ε where ε is the alleged position of the flip-down
(taken among the few possible ones). Then the first loop
(lines 4–7) eliminates the ones in the exponent higher than
the fault position through dividing it by the aforementioned
value, which is repeatedly squared in order to cover all the
possible positions.

Once all the bits of the public exponent with position greater
than ε have been cleared, the algorithm triggers a chain of
subtractions between m2ε

and the ciphertext with reduced
exponent (lines 8–18) and swap their roles when the exponent
of the first number is smaller than the one of the second
(lines 16–18). Starting from line 8, the algorithm employs two
temporary values, x and y in order to store the two numbers
involved in the reduction. Since the chain of subtractions
required to reduce the public exponent to one would be O(e)
long, we would like to subtract a convenient multiple of the
minuend each time. In particular, the function ALIGNEXP (line
12) computes the maximum number of times the minuend
can be doubled while being smaller than the subtrahend, and
returns it together with the multiplied exponent. In order



to maintain coherence between the stored value of the y
exponent eys and the actual exponent of y, we need to square
a correct number of times (line 13). Using this technique we
reduce the number of subtractions to O(log2 e) thus making
computationally feasible the retrieval of the message. This
chain of subtractions will eventually lead to the recovery
of the message since the possible values generated for the
exponent are strictly decreasing and belong to the subgroup
(〈 gcd(e, 2ε) 〉, +) over (Zϕ(n), +) therefore, being e and 2ε

coprime, we will surely generate 1.
It is easily possible to generalize the algorithm assuming the

position of the fault is completely unknown but fixed. In this
case the Algorithm IV.1 has to be run at most t = dlog2 ϕ(n)e
times in order to check all possible fault locations.

Algorithm IV.1: PLAINTEXT RETRIEVAL

Input: c, c̃, kpub = (n, e), ε
Output: m: potential plaintext
Data: t = dlog2 ϕ(n)e, c = me mod n,

c̃ = me−2ε

mod n, ε ∈ [ 0, t− 1 ]: fixed fault
position.

begin1

mε ← c c̃ −1 mod n /* mε ← m2ε

mod n */2

a, b← c̃, mε3

for j ← ε + 1 to t− 1 do4

b← b2 mod n5

if ej = 1 then6

a← a b −1 mod n7

/* a = me mod 2ε

mod n, e mod 2ε < ϕ(n) */
x, y ← mε, a8

ex, ey ← 2ε, e mod 2ε9

ez ← ex/ey /* integer division */10

while ez 6= 1 do11

eys , ns← ALIGNEXP(ex, ey)12

ys ← y2ns

mod n13

z ← x y−1
s mod n14

ez ← ex − eys15

if ez < ey then16

x, y ← y, x17

ex, ey ← ey, ex18

return z19

end20

C. Secret Key Extraction Attack

The target of this attack is to retrieve the private exponent d
when the device is signing messages with an RSA implemen-
tation performing the exponentiation through plain square-and-
multiply. The attack scenario is the one in which the attacker
has access to a decrypting device and is allowed to choose
arbitrary ciphertexts to be fed while injecting faults.

The key points of this attack are sketched in [14], where it
is assumed a generic fault hypothesis which is compliant with
our fault model.

The fault model used in this context is the one concerning
the swap of instructions with similar binary encodings; in

particular, our purpose is to exploit the substitution of the not
equal condition in the instruction opcode with an equal
condition. In the following code snippet is reported an example
of the check section of the left-to-right square-and-multiply
exponentiation used in order to perform an RSA signature:

// in the S&M loop
...
MOV r2, #0 // load constant value 0
CMP r1, r2 // compare with exponent bit
BNE MULT // branch to multiply section
...

Every time the fault flips the condition checked by the
branch instruction in the code, the effect on the result is the
same of a bit flip in the value of d. Therefore there are two pos-
sible values for the corrupted signature s̃ : s̃ = sd−2ε

mod n
or s̃ = sd+2ε

mod n depending on whether the value that the
check misjudged is a zero or a one.

In order to discover both the position and the effect of
the fault it is possible to use the method described in Al-
gorithm IV.2.

The key idea is to use the faulty signature to extract the
information on the secret exponent one bit at a time. First
of all, it is necessary to precompute a lookup table, A, of
all the values Ai = m2i

mod n for i ∈ [0, t − 1] and
store it. Since the value s/s̃ mod n or s̃/s mod n may be
equal to m2ε

mod n depending on whether a flip down or a
flip up occurred, it is possible to search both values in the
precomputed table. If one of the two values matches an entry,
we both know the position of the fault and the value of the
bit of the exponent d. This procedure can be iterated until a
reasonable number of bits of the exponent is known.

In order to give a quantification of the number of faults

Algorithm IV.2: SECRET KEY RETRIEVAL

Input: m, s, kpub = (n, e)
Output: d = 〈dt−1, dt−2, . . . , d1, d0〉: recovered secret

key
Data: t = dlog2 ϕ(n)e, R = t ln(t + 1)

A = 〈∀i ∈ [0, t− 1], Ai = m2i

mod n〉
begin1

for i← 0 to t− 1 do2

di ← NIL3

for i← 0 to R− 1 do4

s̃← FAULTYSIGN(m)5

for i← 0 to t− 1 do6

if s s̃−1 mod n = Ai then7

di ← 1 /* flip down */8

break9

if s̃ s−1 mod n = Ai then10

di ← 0 /* flip up */11

break12

return d13

end14



needed to discover the value of t unknown bits we consider
a random variable X counting how many faults are injected
in a run until all the bits have been hit and aim at finding its
expected value. Let Xj denote the random variable counting
the number of injected faults needed to cover the j + 1-th
bit assuming that all the others up to the j-th are covered.
The random variable Xj follows a geometric distribution
with parameter t−j

t . Therefore, the probability that, after k
injections, an untouched bit gets hit at a j + 1-th position
is given by Prob(Xj = k) = t−j

t

(
j
t

)k−1
. The expected

value of Xj is E[Xj ] = t
t−j . Since the original X is actually

X =
∑t−1

j=0 Xj , it is possible to model the expected value of
X as E[X] = t

∑t
j=1

1
j ≤ t ln(t + 1).

This gives us an average number of faults R = t ln(t + 1)
to be injected successfully in order to retrieve all bits. The
attack may be run up to the complete discovery of all the bits
of d or until when the possible values of the exponent are few
enough to be checked through brute force.

V. EXPERIMENTAL RESULTS

After proposing a fault model backed by experimental
confirmations and delineating a number of attacks exploiting it,
this section presents the results of the experimental campaign
conducted in order to assess the practical feasibility of the
Bellcore and e-th root extraction attack. We delegate to a
future development the experimental realization of the secret
key retrieval attack reported in Section IV-C due to the long
times involved in reproducing significant instances of the fault.

A. Bellcore Attack Evaluation

The first campaign was conducted to explore the feasibility
of the attack to the CRT based version of RSA. The em-
ployed C-code implements RSA using Montgomery Multi-
plication [15] and performs the two exponentiations needed
by the CRT through plain square-and-multiply following the
algorithm delineated in Section IV-A. None of the counter-
measures known in the literature were enabled [16], [17]. In a
first phase, the whole algorithm is run in a continuous loop in
order to determine the voltage point at which the faults begin
to appear. This allows us to tune the induced number of faults
to a single one per algorithm run.

Once the correct voltage point has been determined, we ran
three experimental campaigns of 10000 runs each to compute
RSA signatures with modulus sizes: 512, 1024, 2048 bits
respectively. The binary code was directly loaded on the plat-
form through the U-Boot embedded bootloader, thus running
without any underlying operating system. The data cache of
the ARM9 microprocessor was disabled for the whole duration
of these experiments. Subsequently, all the faulty computation
results were collected and the gcd between them and the
modulus was computed to retrieve one of the two factors.
Table I shows the percentage of exploitable faults obtained
during the campaign. As expected, the number of injected
faults grows with the size of the modulus since the number
of load operations employed increases. For large modulus
sizes, the exploitable faults represent the vast majority of the

Table I
PERCENTAGES OF INJECTED FAULTS OVER 10000 RUNS, WITHOUT ANY

UNDERLYING OS. THE FIRST COLUMN SHOWS THE PERCENTAGE OF
INJECTED FAULTS DURING RSA-CRT COMPUTATIONS, WHILE THE

SECOND COLUMN REPORTS THE NUMBER OF FAULTS EXPLOITED TO
FACTOR THE MODULUS.

Module Size Faulted RSA Computations Exploitable Faults

512 7% 3%
1024 12% 8%
2048 25% 19%

occourred faults since the modular exponentiation requires
a greater number of load operations due to the increased
number of multiple precision multiplication operations.

Willing to investigate a scenario closer to a real world
implementation, we decided to mount an attack while running
the binary over a full fledged Linux 2.6.15 kernel, enabling
the 16KiB data cache embedded in the ARM9 microprocessor.

Table II shows the results of the attack. Coherently with the

Table II
PERCENTAGES OF INJECTED FAULTS OVER 10000 RUNS, RUNNING ON

LINUX 2.6.15. THE FIRST COLUMN SHOWS THE PERCENTAGE OF
INJECTED FAULTS DURING RSA-CRT COMPUTATIONS, WHILE THE

SECOND COLUMN REPORTS THE NUMBER OF FAULTS EXPLOITED TO
FACTOR THE MODULUS.

Module Size Faulted RSA Computations Exploitable Faults

512 6.6% 4.6%
1024 5.4% 5.0%
2048 39% 39%

previous results, the gap between the injected and exploitable
faults closes as the module size grows. The steep increase in
the success rate of the attack when moving up from 1024 to
2048 bit of modulus size may be ascribed to the lapsing of the
effectiveness of data cache, which in turn forces the CPU to
load the required values from the main memory, thus raising
the fault occurrence rate. The rates of successful attacks for the
2048 bit modulus are even higher than the previous experiment
where no operating system was present. This is to be ascribed
to the frequent register spill operations forced by the multi-
tasking operating system, which lead to extra load operations
of the values elaborated in the algorithm.

In order to evaluate a well known and widespread open
source implementation of RSA, we decided to mount the
last voltage underfeeding attack to RSA-CRT using OpenSSL
0.9.1i [18] on the previous test set. In the attacked implemen-
tation both message blinding and signature verification attack
countermeasures were disabled. The significant difference
between the results in Table III and the previous ones lies
in the fact that the OpenSSL library has a more fault sensitive
internal structure due to a deeper layering of the encryption
primitive calls. The result shown in this section prove that our
fault model is practically viable in order to successfully deliver
the Bellcore attack with a reasonable number of induced faults.
The vast experimental campaign demonstrates the feasibility
on a widely deployed platform constituted by Linux running



Table III
PERCENTAGES OF INJECTED FAULTS OVER 10000 RUNS, RUNNING ON

LINUX 2.6.15. THE FIRST COLUMN SHOWS THE PERCENTAGE OF
INJECTED FAULTS DURING OPENSSL RSA-CRT COMPUTATIONS, WHILE
THE SECOND COLUMN REPORTS THE NUMBER OF FAULTS EXPLOITED TO

FACTOR THE MODULUS.

Module Size Faulted RSA Computations Exploitable Faults

512 7.27% 6.77%
1024 4.4% 4.2%
2048 13.27% 11.73%

on an ARM9 microprocessor.

B. Evaluation of the e-th Root Extraction Attack

The second experimental campaign was conducted in order
to ascertain the possibility of extracting the message from a ci-
phertext through the technique described in Section IV-B. The
platform used for the experiment was the same employed for
the second experiment of the previous section, that is a C-code
implementation of RSA based on Montgomery Multiplication
running on Linux 2.6.15. This time, the algorithm employed
was a plain square-and-multiply modular exponentiation used
to encrypt a message with a full sized public exponent e.
For each computation, the input message was mapped into
the Montgomery domain before the exponentiation and was
mapped back at the end of the computation.

Considering modulus sizes of 512, 1024, and 2048 bits
respectively, we underfed the supply power line of the ARM9
microprocessor and completed for each of them an experi-
mental session with 1000 faulty runs of the RSA encryption
primitive.

Let T = 4 dlog2 ee/w be the number of possible positions
of a fault injected in the public exponent e, where w is the
word length of the microprocessor (i.e. 32 bit). The constant
factor 4 was due to the four possibly different alignments of
the exponent e in the main memory caused by the compiler.

For each run, we needed to iterate the plaintext retrieval
algorithm (Algorithm IV.1) at most T times and check through
re-exponentiation if the retrieved message was correct. In this
way all the faulty ciphertexts generated by errors which did
not alter the exponent were easily recognized.

Table IV shows in the first column the percentage of
exploitable faulty computations out of 1000 faulty runs of the
RSA encryption primitive. The second column reports the time
needed to execute a single run of Algorithm IV.1 on an Intel
Core 2 Quad E6600 clocked at 2.4 GHz.

Table IV
ROOT EXTRACTION SUCCESS RATE OVER 10000 INJECTED FAULTS

Modulus Exploitable Faults Single Check and Retrieval Time

512 62.77% 0.263s
1024 20.23% 3.9845s
2048 36.42% 101.112s

Taking into account the high success percentages shown in
the table together with the low computation times we state

that the attack is feasible in practice. The worst case recovery
time does not exceed 5 minutes and the average number of
required faults is not greater than 5, since a single exploitable
fault leads to the recovery of the whole enciphered message.

VI. CONCLUSION

In this paper we have presented a new fault injection
model relying on constantly underfeeding a general purpose
microprocessor. We have characterized in full the new type
of induced faults in both position and corruption patterns,
splitting the effects into two classes: data corruptions and
instruction swaps. The most appealing features of the model
are the cheapness, the ease of induction and the absence of
forecoming hurdles bound to the evolution of the chip building
techniques. The experimental campaign conducted proved that
our fault model is practically viable in order to successfully
mount both the Bellcore and the e-th root extraction attacks
with a reasonable number of induced faults. We foresee as
future developments in this field the practical implementation
of the secret key extraction attack, the evaluation of the
implementative cost of the possible countermeasures required
to thwart this attack and the evaluation of the effectiveness of
the existing ones. Another interesting direction of research is
represented by the application of this fault model to different
cryptographic primitives such as AES and pairing algorithms.
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